Statistical Learning for Data Science: Basic
techniques using R

Stefan Zohren

15 February 2016

Content of this lecture

> Model selection

> Best subset selection

» Forward and backward selection
» Regularisation

> Rigid regression

» Lasso
» High-dimensional data

» Case study: The Arcene data set
» Summary

Regression and classification revision

Let us recall the multivariate linear regression model with p
predictors X, ..., Xp.

yi = f(xi) + € = ap + arxip + ... + apXxip + €

We are focusing our discussion here on linear regression (lecture 1)
but it can be straightforwardly applied to classification using logistic
regression as well (lecture 2).

Regression example: Housing data

Recall how we implemented linear regression on the training data
set for the Housing data. First splitting the data

n <- nrow(HousingData)

trainIndices <- sample(l:n, n*2/3)
HousingData.train <- HousingData[trainIndices,]
HousingData.test <- HousingData[-trainIndices,]

and then fitting the linear regression:

fit.1lm <- 1m(MedianHouseValue ~ . ,
data = HousingData.train)

Subset selection

» One question we faced was which predictors to include in the
model

> In a previous exercise you investigated several choices manually

> Subset selection is an automated way to do this

» We will now discuss best subset selection, as well as forward
and backward selection

Best subset selection

Best subset selection takes all subsets of predictors of a given size
(running from 1 to a maximum number) and determines which
subset gives the best model, e.g. by evaluation adjusted R? or other
criteria. It is implemented in R using the function regsubsets in
the leaps package

library(leaps)
fit.subset <- regsubsets(MedianHouseValue ~ . ,
data = HousingData.train)

Best subset selection

For example, for 1 predictor it found:

coef (fit.subset,id=1)

(Intercept) MedianIncome
#it 0.4581578 0.3985915

For 2 predictors:

coef (fit.subset,id=2)

#i# (Intercept) MedianIncome HousingMedianAge
-0.07329656 0.42289600 0.01555377

etc.

Best subset selection: Test error

For all of these models we evaluate the test error on the test data
set and obtain:

0.55

Test error

0.45
1

No. of predictors

Best subset selection

» We would probably choose the model with 4 predictors, since
for more predictors the error does not improve much.

names (coef (fit.subset,id=4))

[1] "(Intercept)" "MedianIncome" "HousingMedian
[4] "Latitude" "Longitude"

> In general we chose the model which is the least flexible model
within one standard deviation from the model with minimal
test error, the so-called one standard deviation rule.

» Therefore we would have to repeat the procedure with different
choices of test sets to determine the variance of the test error
under those choices

Best subset selection

As an example we redo the analysis with a different random seed
and add the new points to the figure (in red).

re)
v
(=]

Test error

No. of predictors

Forward and backward selection

> In best subset selection we search through all subsets of a
given size g to find the best selection of predictors.

» Instead, in a greedy fashion, we could look for the best
predictor in the case q=1 and then for g=2 look which would
be the best predictor to add to this one and so on. This is
called forward selection.

> Alternatively, we could also start off with all predictors and

then remove them one by one, always checking which is the
best one to remove. This in turn is called backward selection.

Forward and backward selection

In R all those methods can be implemented by choosing different
attributes for method in the regsubsets function. In particular,

» method = "exhaustive" is the standard option and refers to
full subset selection using exhaustive search.

» method = "forward" refers to forward selection

» method = "backward" refers to backward selection.

Example: best subset selection vs forward selection

0.50
1

Test error

0.45
1

0.40
1

No. of predictors

Regularisation: Rigid regression

In subset selection, all we did was basically solving the usual
least-squares optimisation problem:

m|nz i — f(x))

subject to the constraint that at a given number of the a; is set to
zero.

Rigid regression is simply another ways to put a constraint on the
coefficients a; to force them to be closer to zero:

n P
main Z lyvi— (a0 + a1xin + ... + apx,-p)]2 , subject to Z a,-2 <C
i=1 i=1

Here C is called the cost.

Regularisation: Rigid regression

Mathematically speaking we can rewrite the constraint optimisation
problem above in its conjugate form:

n P
main <Z lyvi — (a0 + a1xi1 + ... + a,,x,-,,)]2 +)\Z a?)
i=1

i=1

Here X\ is conjugate to C, i.e. small X\ corresponds to large C and
vice versa.

Regularisation: Rigid regression in R

In R rigid regression is implemented in the package glmnet.

library(glmnet)

The syntax is slightly different, by passing X and vy, as opposed to a
formula:

X.train <- as.matrix(HousingData.train[,-1])
y.train <- as.matrix(HousingData.train[,1])
fit.rigid <- glmnet(X.train,y.train,alpha=0,lambda=0.1)

Regularisation: Rigid regression example

Here we see the test error as a function of the shrinkage parameter.

Test error
0.7 0.8

0.6

0.5

0.4
(o]
(o]
(o]

1le-06 le-04 le-02 1e+00

lambda

Regularisation: Lasso

The lasso is nearly the same as rigid regression with the only
difference that in the penalty term we consider |a;| as opposed to a?:

n p
main (Z lvi — (a0 + arxip + ... + apXip)]2 +)\; |3i|>

i=1

Regularisation: Lasso vs rigid regression

fit.rigid <- glmnet(X.train,y.train,alpha=0,lambda=0.05)
fit.lasso <- glmnet(X.train,y.train,alpha=1,lambda=0.05)

Here are the estimated coefficients for rigid regression:

(fit.rigid$beta) [1:4]

[1]1 0.40944422 0.01046672 -0.07407463 0.41995763

and here are the estimated coefficients for the lasso:

(fit.lasso$beta) [1:4]

[1] 0.369265264 0.008869284 0.000000000 0.000000000

Regularisation: Lasso vs rigid regression

» The lasso chooses several coefficient exactly to zero. This
is for example good for interpretation.

» It can be explained through the following figure:

High-dimensional data

» When there are many more predictors than observations,
p > n, we speak of high-dimensional data.

In general, for p > n. The solution to ordinary least squares:
a=(X"X)"xTy

does not exist anymore. When using for example rigid regression the
pseudo-inverse gets regularised solving the existence issue:

a=(X"X+A)XTy

Thus regularisation is essential for high-dimensional data!

Case study: The Arcene data set

» The Arcene data set is data for a classification problem where
we want to infer cancer (label 1) or no cancer (label -1) from
mass-spectroscopy data.

» The training set consists of only n=100 observations. However,
the mass-spectrometric data gives rise to p=10000 predictors.

» Thus we have a typical example of high-dimensional data with
p > n.

Case study: The Arcene data set

We read in the training data which is in a separate file:

X.train <- read.csv("arcene_train.data.txt", sep=" ",heade:
X.train$V10001 <- NULL # this %s an artefact from the lin
X.train <- as.matrix(X.train)

y.train <- read.csv("arcene_train.labels.txt", sep=" ", heac
y.train <- as.factor(y.train$label)

The same is done for the CV/test data.

Case study: The Arcene data set

You can fit a logistic regression with lasso penalty using the glmnet
function by including the attribute family="binomial" to indicate
that we are doing logistic regression. This is the same attribute as
in the glm function. For example:

fit.lasso <- glmnet(X.train, y.train, alpha=1,
lambda=0.05, family="binomial")

Case study: The Arcene data set

Test error and best fit:

Misclassification rate on CV set
0.35
|

0.30
1

0.25
1

T T T T T
le-11 le-08 le-05 le-02 le+01

shrinkage parameter lambda

You will continue this analysis in the exercises.

Discussion

> We discussed model selection using the leap package; this
included: best subset selection (exhaustive search), as well
as forward and backward selection.

» We introduced the highly important technique of
regularisation, in particular, rigid regression and the lasso.

> The lasso had the advantage over rigid regression, that it
chooses several coefficients exactly equal zero, which was
particularly good for interpretation of the final model

> Regularisation is essential for high-dimensional data. We
look at the Arcene data set as an example.

