
Handout 3
Stefan Zohren

15 February 2016

Model selection

Let us recall the multivariate linear regression model with p predictors x1, ...,xp.

yi = f(xi) + εi = a0 + a1xi1 + ...+ apxip + εi

We are focusing our discussion here on linear regression (lecture 1), but it can be straightforwardly applied to
classification using logistic regression as well (lecture 2).

One problem we are facing when analysing such a model is which predictors to include and which to possibly
leave out. There might be some unrelated predictors in the data set which will not be informative for
predicting the response variable and which can potentially hurt us in increasing the chance of overfitting.

In the first session we looked at a concrete example of the California Housing data. Let us use the same data
set here. We first import it:

HousingData <- read.csv("California-Housing.txt")

and then split it into a training and test set:

set.seed(10)
n <- nrow(HousingData)
trainIndices <- sample(1:n, n*2/3)
HousingData.train <- HousingData[trainIndices,]
HousingData.test <- HousingData[-trainIndices,]

Best subset selection

In the first handout you were asked in one exercise to try out different combinations of predictors and for
each of them evaluate the test error and thus see which variables you should include in your model. Model
selection using best subset selection as discussed in this first part of the handout is really nothing else,
but only doing it in an automated manner. In particular the function regsubsets of the package leaps
allows us to call one regression function with a given maximum number of predictors nvmax (by default it
chooses nvmax=8) and have the function try out all possible combinations of predictors and fit the model for
each of them. More precisely, the function uses a certain quality measure (like adjusted R2 and others) to
find the best model with a given number of predictors. Let us try this on the Housing data set:

library(leaps)
fit.subset <- regsubsets(MedianHouseValue ~ . ,

data = HousingData.train)

We can use summary(fit.subset) as usual to obtain more detailed information on the fit. In particular,
summary(fit.subset)$rsq gives us the R2 and summary(fit.subset)$adjr2 the adjusted R2, which inform
us about the quality of the fit. However, as we know, as long as we evaluate the error on the training set is
will always decrease with increases flexibility and the R2 conversely will increase with increasing flexibility.

1

The adjusted R2 tries to compensate for this, but we are better off, as always, evaluating the test error on
a separate test data set. A problem that we are facing is that there is no predict function implemented
for objects of type regsubsets. We can work around this by using an explicit implementation of the model
matrix for the test data set. Recall from the mathematical notes in handout 1 that

X = (1,x1, ...,xp)

is called the model matrix (it is a (n× (p+ 1))-dimensional matrix). It can be created in R using the function
model.matrix

mmat <- model.matrix(MedianHouseValue ~ . ,
data = HousingData.test)

head(mmat)

(Intercept) MedianIncome HousingMedianAge AverageNoRooms
5 1 3.8462 52 6.281853
9 1 2.0804 42 4.294118
18 1 2.1202 52 4.052805
20 1 2.6033 52 5.465455
23 1 1.7250 52 5.096234
30 1 1.6875 52 4.703226
AverageNoBedrooms Population AverageOccupancy Latitude Longitude
5 1.0810811 565 2.181467 37.85 -122.25
9 1.1176471 1206 2.026891 37.84 -122.26
18 0.9669967 648 2.138614 37.85 -122.27
20 1.0836364 690 2.509091 37.84 -122.27
23 1.1317992 1015 2.123431 37.84 -122.27
30 1.0322581 395 2.548387 37.84 -122.28

The idea is that we can extract the vector of estimated coefficients of the model â and then simply calculate
the matrix vector product

ŷ = Xâ

We can extract â using coef e.g.

coef(fit.subset,id=2)

(Intercept) MedianIncome HousingMedianAge
-0.07329656 0.42289600 0.01555377

We can now evaluate the test error for the model with 1 predictor, 2 predictors etc. This is done using the
above ingredients inside of a for-loop:

testErrors <- rep(NA,8)
for(i in 1:8){

ahat<- coef(fit.subset,id=i)
pred <- mmat[,names(ahat)] %*% ahat
testErrors[i] <- mean((HousingData.test$MedianHouseValue-pred)^2)

}
plot(testErrors, ylab="Test error", xlab = "No. of predictors", type="b")

2

1 2 3 4 5 6 7 8

0.
40

0.
45

0.
50

0.
55

No. of predictors

Te
st

 e
rr

or

Here names(ahat) selects the names of the predictors in ahat. As we learned in the first handout, we can
index matrices by names, which is what we are doing here. Then %*% invokes the standard matrix vector
product.

Exercise: Write your own predict function for objects of type regsubsets which should be
predict.regsubset <- function(object,newdata,id). This exercise might be challenging for
you. If you get stuck, consult Sec. 6.5.3 of the text book where this and the above are worked out in detail.

Note that if we would have to choose a model for prediction, at first sight, we might consider choosing the
model with six predictors. In this case the relevant predictors are:

names(coef(fit.subset,id=6))[2:7]

[1] "MedianIncome" "HousingMedianAge" "AverageNoRooms"
[4] "AverageNoBedrooms" "Latitude" "Longitude"

However, the rule is to always choose the least flexible model, if the error changes only very little. Considering
this, we could also argue that after having introduced three or four predictors we are only gaining very little
when introducing new predictors and we might for robustness and interpretability stick with the model with
only three predictors. In this case the relevant predictors are

names(coef(fit.subset,id=3))[2:4]

[1] "MedianIncome" "Latitude" "Longitude"

i.e. median income and the house location are most informative for inferring its value. You might find the
choice a bit arbitrary, but there is a general rule of thumb: What we can do is to check the variance of those
points by repeating the above procedure with different random splittings of the data. Then we chose the
model which is the least flexible model within one standard deviation from the model with minimal test error,
the so-called one standard deviation rule.

As an example we redo the analysis with a different random seed and add the new points to the figure (in
red).

3

1 2 3 4 5 6 7 8

0.
40

0.
45

0.
50

0.
55

No. of predictors

Te
st

 e
rr

or

Now it is clearer that the final model should really be the one with 3 or 4 predictors (the latter also includes
HousingMedianAge in addition to the other predictors).

Forward and backward selection

In best subset selection, as described in the previous section, the algorithm looks first at models with one
predictor, then models with two predictors etc. until reaching the maximum number of predictors specified.
For each of those cases the algorithm searches for the best possible subset of predictors, i.e. for one predictor
this would be the best one, for two predictors this would be any subset of size two, not necessarily including
the best predictor obtained in the model with one predictor. This exhaustive search over all possible subsets
can easily get very computational intensive if the total number of predictors and the number of predictors in
the subset become large. If we have p predictors in total and are searching of subsets of size q, then this
number will be ‘p choose q’. It is thus often better to use a more ‘greedy’ approach. For example we could
look for the best predictor in the case q=1 and then for q=2 look which would be the best predictor to
add to this one and so on. This is called forward selection. Alternatively, we could also start off with all
predictors and then remove them one by one, always checking which is the best one to remove. This in turn
is called backward selection. Both of these methods are much less computationally expensive than the full
subset selection using exhaustive search. In R all those methods can be implemented by choosing different
attributes for method in the regsubsets function. In particular, method = "exhaustive" is the standard
option and refers to full subset selection using exhaustive search. method = "forward" refers to forward
selection while method = "backward" refers to backward selection.

Exercise: Repeat the analysis from the previous section using both forward and backward selection.

You should see something like the following figure for forward selection, where the black line is our previous
result using exhaustive search while the red line shows the corresponding result for forward selection:

4

1 2 3 4 5 6 7 8

0.
40

0.
45

0.
50

0.
55

No. of predictors

Te
st

 e
rr

or

Exercise: Exercise can you explain why we see the difference. (Hint: Think of the informative power when
just adding one of longitude and latitude without the other.)

Regularisation

So far we have only tuned the flexibility of our models by including or removing certain predictors. In tutorial
1 we did this by hand, which could be done by simply trying out various combinations or using some kind
of domain knowledge which supports the choice of certain predictors. In this tutorial we automated this
process by using subset selection, using either an exhaustive search or forward and backward selection. In
this section we aim to further automate this by introducing a continuous parameter which tunes the flexibility
of the model. This is called regularisation. We explain the basic principles of regularisation using rigid
regression which is one form of its implementation. We then also discuss the lasso, which is another very
popular method of regularisation, particularly suited for very high-dimensional problems.

Rigid regression

The basic idea behind rigid regression and regularisation in general is very simple. When we considered
subset selection in the previous section, all we did was basically solving the usual least-squares optimisation
problem:

min
a

n∑
i=1

(yi − f(xi))2.

subject to the constraint that at a given number of the ai is set to zero, i.e. all but q entries of a are fixed to
be zero. Rigid regression is simply another way to put a constraint on the coefficients ai to force them to
be closer to zero. In particular the optimisation problem of rigid regression can be written as

5

min
a

n∑
i=1

[yi − (a0 + a1xi1 + ...+ apxip)]2 , subject to
p∑
i=1

a2
i ≤ C

In other words, instead of choosing a certain number of coefficients ai to be zero, we simply limit the value
of the sum of their squared values. Here C is called the cost. The smaller the value of C the less flexible
the model is, e.g. with very small C only very few coefficients can have a value significantly different from
zero. With C becoming larger the model becomes more flexible and for C →∞ we recover standard linear
regression, i.e. an infinite cost is the same as having no constraint.

Mathematically speaking, we can rewrite the constraint optimisation problem above in its conjugate form:

min
a

(
n∑
i=1

[yi − (a0 + a1xi1 + ...+ apxip)]2 + λ

p∑
i=1

a2
i

)

Here λ is conjugate to C, i.e. small λ corresponds to large C and vice versa.

Exercise: If λ increases does flexibility go up and down? What about C? Argue using the above optimisation
problems.

The first term in the minimisation above is our standard least-squared cost function, while the second term
in the minimisation is the penalty term. This structure of cost function and penalty is very general and
appears in many machine learning models of different kinds. The difficulty with more advanced models, like
neural networks, is that the cost function becomes non-convex which makes the optimisation problem very
difficult, especially if the dimensionality of the parameter space (i.e. the number of coefficients) becomes very
large. Nevertheless, the basic principle of cost function and penalty term remains the same.

In R rigid regression is implemented in the package glmnet.

library(glmnet)

The corresponding function is also called glmnet. It can be used the first various regularised models; the
parameter alpha=0 indicates that we want to perform rigid regression. The particular form of the function
requires us to split the data table in a y vector and a data matrix containing all other columns, see ?glmnet
for details. Recall that our response variable MedianHouseValue is in the first column of the data table, i.e.
HousingData.train[,1]. We can fit the model using

X.train <- as.matrix(HousingData.train[,-1])
y.train <- as.matrix(HousingData.train[,1])
fit.rigid <- glmnet(X.train,y.train,alpha=0,lambda=0.1)

Luckily for objects of type glmnet the function predict is implemented.

Exercise: Perform rigid regression for a range of values for the tuning/shrinkage parameter λ, for example
for all elements of the vector lam.list <- c(1e-6,1e-5,1e-4,1e-3,1e-2,1e-1,1,10). For each of those
rigid regression models evaluate the test error on the test data set and save it in a vector of the same length
as lam.list. Produce a plot like the one shown below. How does this relate to the results of the previous
section?

6

1e−06 1e−04 1e−02 1e+00

0.
4

0.
5

0.
6

0.
7

0.
8

lambda

Te
st

 e
rr

or

Lasso

In the previous section we learned about rigid regression. The lasso is nearly the same algorithm with the
only difference that in the penalty term we consider |ai| as opposed to a2

i . The optimisation problem for the
lasso is thus given by

min
a

(
n∑
i=1

[yi − (a0 + a1xi1 + ...+ apxip)]2 + λ

p∑
i=1
|ai|

)

You might ask: Does this slight change really make a difference? Indeed is does and we will explore this in
the following.

Exercise: Repeat the previous analysis using the lasso. (Simply change alpha=0 to alpha=1 in your code.)

The plot for the test error produced above should look roughly the same as for rigid regression. To understand
the difference, let us look in more detailed at the estimated coefficients (which are accessed in glmnet using
beta).

fit.rigid <- glmnet(X.train,y.train,alpha=0,lambda=0.05)
fit.lasso <- glmnet(X.train,y.train,alpha=1,lambda=0.05)

Here are the estimated coefficients for rigid regression:

fit.rigid$beta

8 x 1 sparse Matrix of class "dgCMatrix"
s0
MedianIncome 4.094442e-01
HousingMedianAge 1.046672e-02

7

AverageNoRooms -7.407463e-02
AverageNoBedrooms 4.199576e-01
Population 1.587798e-05
AverageOccupancy -3.612073e-03
Latitude -2.307629e-01
Longitude -2.321618e-01

and here are the estimated coefficients for the lasso:

fit.lasso$beta

8 x 1 sparse Matrix of class "dgCMatrix"
s0
MedianIncome 0.369265264
HousingMedianAge 0.008869284
AverageNoRooms .
AverageNoBedrooms .
Population .
AverageOccupancy .
Latitude -0.098901196
Longitude -0.085580703

We know that in rigid regression the penalty term forces the coefficients to be smaller, but looking at the
output, we cannot really tell which ones are more and which less important. This is mainly because we do
not know the scale. One coefficient is of order 10−5, but it could be the coefficient of a predictor which is
stated in units of millions. Hence, it might be an important coefficient even though it is apparently small.
The lasso has the big advantage that it automatically chooses a number of (less relevant) predictors exactly
equal to zero. This is particular important if we, for example, want to interpret the model, e.g. in genetics we
might want to know which gene markers were relevant in predicting a certain type of cancer. This feature
made the lasso very popular!

It might be surprising how the small change from a2
i to |ai| in the penalty function has such a drastic effect.

But we can illustrate this in the following figure which is taken from An Introduction to Statistical Learning,
Figure 6.7:

Here we consider the optimisation problem for the lasso and rigid regression in its constraint form

8

http://www-bcf.usc.edu/~gareth/ISL/

min
a

n∑
i=1

[yi − (a0 + a1xi1 + ...+ apxip)]2 , subject to
p∑
i=1
|ai|δ ≤ C

with δ = 1 for the lasso and δ = 2 for rigid regression. In the above plot, the optimisation prob-
lem for the lasso is illustrated on the left-hand-side and the one for rigid regression on the right-hand-
side. The red ellipses illustrate the height lines of the energy surface associated with the cost function∑n
i=1 [yi − (a0 + a1xi1 + ...+ apxip)]2. If the optimisation problem would be unconstraint, like in ordinary

least-squares regression, we would choose the optimal parameters to be the point at the centre of the ellipses.
However, due to the constraints we must have

∑p
i=1 |ai| ≤ C for the lasso, which corresponds to the inside

of the route in the left figure, and
∑p
i=1 |ai|2 ≤ C which corresponds to the inside of the circle in the right

figure. The solution to the optimisation problem is the point which is closest to the centre of the ellipses, but
still within the route or circle respectively. This is exactly where in the figure the outer ellipse touches the
route or circle.

Interestingly, as is illustrated in the figure, for the case of the lasso, the ellipse is more likely to touch the
route on the axis, where precisely one of the two parameters is zero. This also holds for higher-dimensional
parameter spaces and is essentially the reason why in the case of the lasso, as opposed to rigid regression, we
have that many coefficients are exactly chosen to be zero.

High-dimensional data

In the previous section we have analysed rigid regression and the lasso as ways of tuning the flexibility of the
regression model. This is particularly helpful when we have a very large number of predictors, where subset
selection becomes very inconvenient. More interestingly, it can even be employed in cases where ordinary
least-squares regression fails. This is the case when we have more predictors p than observations n. We
can see this mathematically as follows. Recall from the first handout that we can analytically solve the
unconstraint optimisation problem of ordinary least-squares regression by differentiating with respect to the
coefficients. The solution was given by

â = (XTX)−1XTy

where the term (XTX)−1 is also called the pseudo-inverse of X. What happens for p > n is that this
pseudo-inverse ceases to exist (it becomes infinite because XTX will have zero eigenvalues). However, if we
redo the analysis leading to the above equation, but now starting from the optimisation problem for rigid
regression, we obtain

â = (XTX + λI)−1XTy

Now the smallest eigenvalue of XTX + λI is not zero anymore, but rather λ. This regularises the inverses,
which is the reason why we call it regularisation.
We thus see that rigid regression or the lasso are essential when working with data where p > n. A particular
case are data sets where there are many more predictors than observations, p� n ,in which case we speak
about high-dimensional data. The problem with high-dimensional data is that the parameter space we
optimise over is of very large dimension which makes it particularly difficult to fit the data considering that
we have only very few points.

A specific field where high-dimensional data appears very often are biomedical or genetic applications. For
example we could have a study on cancer patients, where we only have data from say n=100 patients, but
for each we have collected around p=100000 gene markers. Apart from predicting cancer given the data of
future patients, we might also want to understand which gene factors are associated with such cancer. In this
case, one could use the lasso, to find a small selection of the predictors which explains the data best. In the
following section we look at a case study of this type.

9

Case study: The Arcene data set

In this case study we look at the Arcene data set which is a nice example of high-dimensional data (see
Arcene data set webpage for more information). The Arcene data set is data for a classification problem
where we want to infer cancer (label 1) or no cancer (label -1) from mass-spectroscopy data. The training set
consists of only n=100 observations. However, the mass-spectrometric data gives rise to p=10000 predictors.
Thus we have a typical example of high-dimensional data with p� n.

In importing the data, note that the training and cross-validation sets are in different files. Furthermore, the
predictors and the response variable are in different files. We first import the training data and put it in the
correct format for using it with glmnet.

X.train <- read.csv("arcene_train.data.txt", sep=" ",header=FALSE)
X.train$V10001 <- NULL # this is an artefact from the line break which we remove
X.train <- as.matrix(X.train)
y.train <- read.csv("arcene_train.labels.txt", sep=" ",header=FALSE,col.names='label')
y.train <- as.factor(y.train$label)

Exercise: Make sure that you understand what each of the above commands does.

Now we import the cross-validation data in the same way:

X.cv <- read.csv("arcene_valid.data.txt", sep=" ",header=FALSE)
X.cv$V10001 <- NULL
X.cv <- as.matrix(X.cv)
y.cv <- read.csv("arcene_valid.labels.txt", sep=" ",header=FALSE,col.names='label')
y.cv <- as.factor(y.cv$label)

You can fit a logistic regression with lasso penalty using the glmnet function by including the attribute
family="binomial" to indicate that we are doing logistic regression. This is the same attribute as in the
glm function. For example:

fit.lasso <- glmnet(X.train,y.train,alpha=1,lambda=0.05,family="binomial")

Exercise: Write a loop which runs over a range of values for the shrinkage parameter λ. For each of those
values, fit a logistic regression with lasso penalty on the training set and then evaluate the error on the
cross-validation set. The error in this case is the misclassification rate. Plot the result. Your figure should
look like the one below.

10

http://archive.ics.uci.edu/ml/datasets/Arcene
http://archive.ics.uci.edu/ml/datasets/Arcene

1e−11 1e−08 1e−05 1e−02 1e+01

0.
25

0.
30

0.
35

0.
40

shrinkage parameter lambda

M
is

cl
as

si
fic

at
io

n
ra

te
 o

n
C

V
 s

et

Note that the error for λ = 10 is the misclassification rate which we get when we classify every label as -1.
Since 56% of all labels are +1 and 44% are -1, we have a misclassification rate of 44% if we simply predict
every label as +1. Obviously, we want to beat this.

Exercise: For your best model: Investigate the fitted coefficients. Which predictors are relevant for inferring
the response variable?

11

	Model selection
	Best subset selection
	Forward and backward selection

	Regularisation
	Rigid regression
	Lasso

	High-dimensional data
	Case study: The Arcene data set

