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Content of this lecture: Unsupervised learning methods

I Introduction to unsupervised learning
I Principal component analysis (PCA)
I Clustering algorithms

I k-means clustering
I hierarchical clustering

I Summary



Supervised learning

So far we looked at regression models, classification models, etc. In
all cases we had labelled data, consisting of a response variable
and p predictors:

labelledData = (y, x1, ..., xp)

All the above learning algorithms fall under the category of
supervised learning.



Unsupervised learning

In this lecture we focus on unsupervised learning, where we have
unlabelled data,

unlabelledData = (x1, ..., xp)

Instead of training a model to predict a certain response, we analyse
models which find certain structures within the unlabelled data.



Unsupervised learning: Models

I The first model is principal component analysis (PCA)
which aims to find a lower-dimensional representation of the
data.

I The second class of models are clustering algorithms, which
aim to cluster points in predictor space, thus being able to
label them according to their cluster labels.



Principal component analysis
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Let us look at some toy data of two predictors.



Principal component analysis
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The first principal component corresponds to the direction (given by
loading vector) where the data varies most, shown by the dashed
line.



Principal component analysis: Mathematical formulation

Let us denote

zi1 = u11xi1 + ... + up1xip =
p∑

j=1
uj1xij , i = 1, ..., n

where u1 = (u11, ..., up1) is the so-called loading vector. Here z1 is
the first principal component.

Saying that the first principal component corresponds to the loading
vector in which direction the data varies most is equivalent to
finding the normalised vector u1 which maximises the sample
variance of zi , i.e. Var(z1) = 1

n
∑n

i=1 z2
i1.



Principal component analysis: Mathematical formulation
Mathematically, the loading vector u1 is thus the solution to the
optimisation problem

max
u1

1
n

n∑
i=1

 p∑
j=1

uj1xij

2
 , subject to ||u1|| = 1.

Generally speaking the loading vector of the m-th principal
component must be orthogonal to the loading vector of the first
m-1 principal components:

max
um

1
n

n∑
i=1

 p∑
j=1

ujmxij

2
 ,

subject to ||um|| = 1 and um⊥(u1, ..., um−1).



Principal component analysis: Example

Let us determine the principal components for the above example
using R. The function for PCA is called prcomp:

pca <- prcomp(data1)

We can look at the loading vectors through the attribute rotations

pca$rotation

## PC1 PC2
## X1 -0.7071068 -0.7071068
## X2 -0.7071068 0.7071068



Principal component analysis: PVE

We can also obtain the variances of the principal components:

pca.var <- pca$sdev^2

from which we can calculate the proportion of variance
explained (PVE) by each principal component:

pca.pve <- pca.var/sum(pca.var)
pca.pve

## [1] 0.9356939 0.0643061

Thus we see that the first principal component already explains
around 93 % of the variance of the data.



PCA Case study: NCI60 data

The NCI60 cancer cell line microarray data, is a data set included in
the package ISLR of your text book An Introduction to Statistical
Learning:

library(ISLR)
nci.data <- NCI60$data
dim(nci.data)

## [1] 64 6830

It has n = 64 observations and p = 6830 predictors. We also
standardise the data.

http://www-bcf.usc.edu/~gareth/ISL/
http://www-bcf.usc.edu/~gareth/ISL/


PCA Case study: NCI60 data

We can do a PCA on the data to obtain a two-dimensional
representation of the data for plotting:
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PCA Case study: NCI60 data
Here we also show the plot of the PVE for each of the principal
components:
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Clustering algorithms

We now move to clustering algorithms, where one aims to assign
labels to data according to some kind of similarity measure of
different points. If some group of points is ‘similar’, then we assign
a given label to them.

In particular we discuss:

I K-means clustering
I Hierarchical clustering



K-means clustering

I We introduce the within cluster variance, defined by

W (Ck) = 1
|Ck |

∑
m,n∈Ck

p∑
j=1

(xmj − xnj)2

Here Ck is the set of points in the k-th cluster and |Ck | is the
number of points in this set.

I Given a predefined number of clusters K, we aim to find the
choice of disjoint clusters whose union is the entire set of points
and which minimise the sum over within cluster variances:

min
C1,...,Ck

(W (C1) + ... + W (CK ))



K-means clustering: Algorithm

Solving the exact optimisation problem is very difficult, but there
exists an approximate algorithm, which works as follows:

I Label the points randomly with K different labels
I Iterate the following until convergence:

I Calculate the centroid of each cluster (centre of mass)
I Assign each point to the closed cluster



K-means clustering: Example and implementation in R

Let us illustrate this with a toy example of simulated data.

The K-means clustering algorithm is implemented with the function
kmeans. Let us perform a clustering with K=4 clusters:

K=4
clust1 <- kmeans(data2, K ,nstart = 10)

We extract the cluster labels of each point using the attribute
cluster.



K-means clustering: Example and implementation in R

Below you see an example of the corresponding plot for K=4.
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Clustering Case study: NCI60 data

We can now also return to the NCI60 data. Shown is a K-means
clustering with K=4, plotted on the reduced space of the first 2 PC:
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Hierarchical clustering

Hierarchical clustering, as the name suggests, produces a whole
hierarchy of clusters. In particular, it produces clusters of size n, n-1,
. . . , 1. In a bottom-up approach starting from each observation
being its own cluster and then merging pairs of clusters.

In a nutshell, the algorithm for hierarchical clustering works as
follows:

I Start with each observation being its own cluster (we have n
clusters);

I Given a similarity measure between pairs of clusters (based on
distance), merge the pair of clusters which are most similar (we
now have n-1 clusters);

I Continue to merge until we have a single cluster.



Hierarchical clustering: Example and implementation in R

Let us return to the toy example of simulated data from the
previous section, saved under data2 and illustrate the above. The
hierarchical clustering is performed as follows:

clust2 <- hclust(dist(data2))



Hierarchical clustering: Example and implementation in R

Let us plot again the data, now labelling every data point for
i=1,. . . ,20.
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Hierarchical clustering: Example and implementation in R

We can also plot the dendrogram by calling the standard plot
function on the object created by the hclust function:
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Hierarchical clustering: Example and implementation in R
To obtain a clustering of a given number of clusters K, we can cut
the tree at a level where it has K branches. This is done using
cutree:
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Clustering case study: NCI60 data (continuation)

We can also perform hierarchical clustering on the NCI60 data. The
dendogram looks as follows
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Clustering case study: NCI60 data (continuation)
Cut the dendrogram such that you have K = 6 clusters. Colour
each cluster and plot the data in the two-dimensional representation
obtained from PCA:
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Summary

I We discussed different types of unsupervised learning.
I In principal component analysis (PCA) our aim was to

obtain a lower-dimensional representation of the unlabelled
data. This reduced data can then be used for visualisation or
as inputs to other supervised learning algorithms.

I In clustering algorithms we aim to assign labels to data
according to some kind of similarity measure of different points.
If some group of points is ‘similar’, then we assign a given label
to them. Concretely, we looked at:

I K-means clustering
I Hierarchical clustering


