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Content of this lecture

» Course overview

A review of bias-variance-tradeoff and cross-validation
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Bias-variance-tradeoff
Training, cross-validation and test sets
The right way of doing cross-validation
N-fold cross-validation

Decision trees (CART)

> Regression trees
» Classification trees
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Courses on statistical learning and data science with R

» Statistical learning for data science: Adv. techniques using R

» Introduction (recap bias-variance-tradeoff and CV), decision
trees;

» Bagging, boosting and random forests;

» Support vector machines;

» Neural networks.

» Statistical learning for data science: Basic techniques using R

> Introduction, Regression analysis: linear and polynomial,
bias-variance-tradeoff;

» Classification: logistic regression, discriminant analysis;

» Regularisation (ridge regression and lasso) and cross-validation;

» Unsupervised learning methods - principle component analysis
(PCA) and clustering (k-means and hierarchical).

» Data Wrangling with R



Structure of each lecture

» These slides walk you through the basic examples in the
handout provided to you on the course webpage.

» Subsequently, during the practicals, you work through the
handout on your computer revising the examples, executing the
commands and attempting the exercises.

» The general setup is:

30 min presentation,

30 min practicals,

30 min presentation,

30 min practicals,

time for general questions afterwards
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Introduction

» The learning algorithms we discussed in “Statistical learning for
data science: Basic Techniques using R" were linear models
and variations thereof.

» The focus on this second module “Statistical learning for data
science: Advanced Techniques using R” will be on non-linear
models.

» A general difficulty in training non-linear models is the fact
that the corresponding optimisation problems are often highly
non-convex which makes them difficult to solve.



Review of bias-variance-tradeoff

We revise an example from Lecture 1 of the first module of
simulated data from the model y; = f(x;) 4 €; where the true model
is f(x) =2+ 0.2(x — 5)? and ¢; ~ N(0,1).
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Review of bias-variance-tradeoff

We fit polynomials of maximum degree 1, 2, 5 and 10 to the data:
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Review of bias-variance-tradeoff

> We see that the RMSE decreases as we increase the flexibility
of the model (degree of the polynomial)

RMSE = (}7 Z e?) - \/mean((§ — y)?)
i=1

> However, for higher flexibility the model does not seem to be a
good fit by looking at it

» How can be capture this in terms of errors we can calculate?

» The solution is to hold-out another data set and calculate the
RMSE on this data set



Review of bias-variance-tradeoff

This leads to the bias-variance-tradeoff

RMSE et = Variance + Bias? + irreducible error
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test error
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training error
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low flexibility high flexibility



Cross-validation

RS

training set

CV set

~_

fine-tune hyper-parameters

» We use a cross-validation set to fine-tune

hyper-parameters such as a the shrinkage parameter in

regularisation




Cross-validation

training set CV set test set

» A problem is that each time we look at the hold-out set to
tune the parameters, we are effectively training on it. In this
case, the error evaluated on the hold-out is under-estimating
the true test error

» To circumvent this and to obtain an unbiased estimate of the
test error it is thus advisable to hold-out yet another part of
the training data to do cross-validation



The right way of doing cross-validation

A common mistake in doing cross-validation (CV) is to involve the
CV or test set in the training process.

This can be very subtle at times, e.g.

» when doing unsupervised learning, i.e. doing a PCA on the
entire data set before splitting the data and regressing on the
principle components

» when normalising data, this should be done on the training
data only and then the test data should be rescaled with the
mean and variance obtained from the training data



N-fold cross-validation
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» Instead of doing a single split we can also divide the data in N
parts, treating one as the CV set and training on the rest

» This gives rise to N estimates for the CV error from which we
can obtain the mean



Regression trees: Basic ideas

Imagine we would like to fit a very simple model to data with
response variable y and a single predictor x, which just consists of
an intercept (i.e. a constant):

yi = f(X,') + €, f(X) =a

It is intuitively clear that the least squared estimator a for a is

3 = mean(y)



Regression trees: Basic ideas

Here is a toy example using simulated data. The constant estimator
is the mean shown by the dashed line.
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Regression trees: Basic ideas

We can make it piecewise constant to obtain a non-linear function
which is a better fit:
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Regression trees: Basic ideas

The basic idea behind regression trees is to fit a piecewise constant
function to the response variable by:

> looking for the best binary split amongst all predictors
(according to some reduction in loss)

» given the previous split search for the next best split in a
greedy manner etc.



Regression trees: Tree representation

The process can be represented by a binary decision tree
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Regression trees: Tree representation

For two predictors the partitioning through splits looks as follows:

Xz

Ry

t2 Ry

it

Xy X1

The partition on the left is incompatible with the greedy splitting
strategy.



Regression trees: Tree representation

The corresponding tree and piecewise constant function look as
follows:

Xy =ty X, <ty
Ry R, Ry
Ry Ry




Classification trees

> A nice aspect of decision trees is that we can easily also deal
with categorial variables both in the predictors as well as in the
response variable. If the response variable is a categorial
variable we call the model a classification tree.

» As opposed to predicting a constant continuous value for the
response variable in a certain partition of the predictor space,
we now predict a constant value of the label.

» The loss function is then changed from RSS to a measure
suitable for a categorial variable, such as so-called cross-entropy
or Gini-index.



Regression trees: Implementation in R

> In R classification and regression and trees (CART) are
implemented (for example) in the tree package

» Use eg. tree.fit <- tree(y ~ x, data = my_data) to
fit a classification or regression tree

» Trees are ‘regularised’ by pruning their size (the bigger the tree
the more flexible the model). This is done in R using
prune.tree() and prune.misclass()

» Cross-validation can be done automatically using cv.tree()



Summary

» We revised the bias-variance-tradeoff, one of the key paradigms
of statistical learning

» We motivated the need for a separate training set,
cross-validation set and test set

» Cross-validation and in particular N-fold cross-validation were
introduced

» Regression and classification trees were introduced as simple
non-linear models which are easy to train and easy to interpret

> In the next class we will see how to combine these tree models
with powerful ensemble techniques leading to random forests,
bagging and boosting

» To learn most, it is instructive to walk through the examples on
your machine as well as to attempt all exercises!
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