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General Information

Course Content

This course is the second part of a course on “Statistical learning for data science”. The topics we cover are:

e Day 1: Introduction, Review of bias-variance-tradeoff and cross-validation; Decision trees;
e Day 2: Bagging, boosting and random forests;

e Day 3: Support vector machines;

e Day 4: Neural networks.

The previous course “Statistical learning for data science: Basic Techniques using R” covered: Regression
analysis: linear and polynomial, bias-variance-tradeoff; Classification: logistic regression, discriminant analysis;
Regularisation (ridge regression and lasso) and cross-validation; Unsupervised learning methods: principle
component analysis (PCA) and clustering (k-means and hierarchical). There is also a one-day topic course
on “Data Wrangling using R”.

Both the first part of the Statistical Learning course, as well as the Data Wrangling course require no prior
knowledge in R. This second course, while reviewing some basic concepts of statistical learning from the first
course, assumes basic familiarity with R.

The main text book for this course is:

o An Introduction to Statistical Learning by James, Witten, Hastie and Tibshirani (ISLR)
Occasionally we also refer to selected sections of the more advanced textbook:

o The Elements of Statistical Learning by Hastie, Tibshirani and Friedman (ESL)

For a comprehensive textbook on machine learning (going far beyond the content of this course), we
recommend:

e Machine Learning: A Probabilistic Perspective, by Murphy

Statistical Software R: Installation and Packages

You can download R from The Comprehensive R Archive Network cran.r-project.org and RStudio from
rstudio.com. Both are free software.

For many people RStudio is the preferred GUI for R. It has a very similar layout to Matlab. Alternatively,
you can also use the R application which comes with the official R distribution. In this case, you might want
to use it together with a text editor to copy over commands. You can also use R using the command line
which will be necessary for example when using it on ARC. You can write R scripts in any editor; Emacs is a
good command line editor with syntax highlighting for R. You can find a help document on how to use R on


http://www-bcf.usc.edu/~gareth/ISL/
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
https://cran.r-project.org
https://www.rstudio.com

the ARC cluster at Oxford here. Whenever using R on the command line you run it via RScript file.R
<optional arguments>.

In many cases you want to install packages for advanced analysis. Standard functions are part of the base
package which is automatically loaded when starting R. The quality of packages varies widely and you might
want to investigate a bit before settling on a given package. A useful reference is CRAN and in particular
CRAN Task View which has commented list of packages for different applications fields, i.e. Bayesian analysis.

Packages can be installed from the Package installer in the application or using the command

install.packages("package_name")

At the beginning of your session or script you then load the package using

library("package_name")

A review of bias-variance-tradeoff and cross-validation

The bias-variance-tradeoff

We start this session by revising the discussion on the bias-variance-tradeoff from the first lecture of the
previous course. We repeat the same example as used previously. This section also serves as a refresher on R
syntax, especially for those who have not attended the first course.

Let us revisit the toy example of data used in the first lecture of the previous course. We considered a model
yi = f(x;) + €;, where f(z) is the true model and ¢; is the noise term of observation i = 1,...,n with n being
the total number of observations. For concreteness we chose

f(x)=2+0.2(z —5)>

and ¢; ~ N(0,1).

In R we can sample (simulate) n=10 observations, as follows.

# Define sequence z = 1,2,...,10

x <- 1:10

# Define function f(z)

f <- function(x) { 2 + 0.2x(x-5)"2 }

# Set seed of random number gemerator:

set.seed(10)

# Compute the wvalue of the function for each = and add noise term. This is vectorised:
y <= f(x)+rnorm(10)

To refresh some important R commands: n:m generates the sequence of integers from n to m. We define a
function using function(argument). There is no need for a return statement in the body of the function
as R automatically returns the last command in the body of the function.

Note that set.seed initialises the seed of the (pseudo) random number generator. rnorm(10) generates a
vector of 10 (pseudo) random numbers from the Gaussian distribution with mean zero and variance 1. See
?rnorm for more information.

Data can be plotted using the plot function. Additional information can be added to the plot using e.g.
points and lines:


https://cran.r-project.org/web/views/
https://cran.r-project.org/view=Bayesian

# Plot the points:

plot(y ~ x, ylim=c(0,10))

# Define a fine grid for plotting a 'smooth' line:
xGrid <- seq(0,10,by=0.1)

# Add the line to the plot:

lines(xGrid,f (xGrid) , lty=2)
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(1ty=2 is the second line type, which is dashed, see ?1lines or ?plot for more information.)

To illustrate the problem of overfitting we performed a little experiment in a previous lecture, where we
fitted polynomials
y=a+a1x+ax®+ ... + apx?

of increasing degree p to the data. In particular, the following plot shows the fitted polynomials for
p=1,2,5,10:
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Exercise: (i) Execute the above commands to generate the data for the toy model, as well as to plot the
data points together with the underlying true model function. (ii) Recall that you can fit a linear model
using the command 1m (see 71m for help). Reproduce the linear fit of the data and add the line to your figure.
(iii) If you attended the first part of the statistical learning for data science course you should be able to
reproduce the entire figure.

Let us denote the fitted response variable by y. A natural measure for the error in regression models is the
so-called root mean squared error (RMSE) defined as:

RMSE = <71Z Zﬁ) = /mean((y — y)?)

i=1

Intuitively, we obtain the error by summing the squared distances of the vertical lines connecting each data
point with the fitted line and taking the square root, e.g. for the linear model (p=1) this would be all the
vertical lines connecting the data points with the red line.

When inspecting the above figure we see that when increasing the order of the polynomial p the RMSE
becomes smaller. In fact, in the case of p=10 (violet curve) all data points lie on the fitted curve and thus
the RMSE = 0, we say that the model has low bias. The higher the p the more flexible we say the model is.
In general it can be shown that the (training) RMSE always decreases as we increase the flexibility.

The above shows a problem in using the RMSE as we naively did. By inspecting the above figures by eye,
we would agree that the models with p=2,5 are much better fits to the data than the model with p=10,
however, the RMSE is smallest for the latter. The problem with the p=10 model becomes apparent if we
were to collect new data (which corresponds to repeating the above experiment with a new set of random
variables). In this case the old fit with p=10 would have a very large RMSE. If we were to re-fit the model
the estimated curve for p=10 would look very different. We say that the model has high variance.

A proper way to measure the error of a model would thus be to use a new data set when evaluating the
RMSE. We call this new data set the test data, while the data set we use to train the model on is called the
training data. Instead of using the RMSE evaluated on the training set, i.e. the training error RMSE;, iy
and we should use the RMSE evaluated on the test set, also called the test error RMSE st .

We have already seen that RMSEq..;, will always decrease when we increase the flexibility (increase p).
However, the above example shows that RMSE;. first decreases when we move up in flexibility from the



linear (p=1) to the quadratic (p=2) model, but then increases once we move to higher p.

The general behaviour can be sketched as follows:

A
test error
variance
L = = =« irreducible error
training error
g
low flexibility high flexibility

The training error always decreases as we increase the flexibility of the model. However, the test error first
decreases and then increases. More precisely, the test error is a combination of three terms

RMSE,;.s; = Variance + Bias? + irreducible error

For low flexibility the bias term dominates, while for large flexibility the variance term dominates. However,
there exists an optimal level of flexibility which minimises the test error. We would like to find this level by
training the model on the test data while varying the flexibility and evaluating the RMSE on the test data.

The above relation is a key concept in statistical learning and is often also referred to as the bias-variance-
tradeoff.

Training, cross-validation and test sets

In the previous section we saw the need to have both a training set as well as a test set. In practice, we would
not obtain new data to test our model, but rather hold-out a part of the data. The test data set is therefore
often also called the hold-out set. Popular splits are 70/30 % or 80/20 % for training and hold-out set.

When discussing regularisation in the previous module, we have seen how one can introduce a single parameter,
such as the shrinkage, which can be used to tune the flexibility of the model. Such a parameter is also called a
hyper-parameter of the model. In fitting the model for a range of values of the hyper-parameter and then
evaluating the error on the hold-out set we can fine-tune the flexibility to the optimal level corresponding
to the minimum of the test error (red curve in above figure). This process is also called cross-validation
(CV) and the error is also often referred to as the cross-validation error.

The process of cross-validation is illustrated in the following figure:
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In simple models, such as lasso, there might be only one hyper-parameter, however, in more complex models,
such as neural networks, there could be many hyper-parameter and fine-tuning those parameters might
involve an extensive grid search over many values for those parameters. One problem in doing this is that
each time we look at the hold-out set to tune the parameters, we are effectively training on it. In this case,
the error evaluated on the hold-out is under-estimating the true test error. To circumvent this and to obtain
an unbiased estimate for the test error, it is thus advisable to hold-out yet another part of the training data
to do cross-validation on and to leave the test set untouched during this process. The situation is then as
depicted in the following figure:

training set CV set test set

After having fine-tuned the hyper-parameters on the CV set, we can re-train the model with the optimal
hyper-paramters on the combined training and CV set.

Let us now see how to do this in R. We start by recalling how to import data, in this case the California
Housing data already used in the previous module:

HousingData <- read.csv("California-Housing.txt")

Make sure that the data file is in your working directory. To change your working directory in RStudio go to
“Session” and then “Set Working Directory”.

It is always a good idea to inspect the data using head () or str(). In RStudio you can also open a spreadsheet
editor using View().

head (HousingData)

##  MedianHouseValue MedianIncome HousingMedianAge AverageNoRooms

# 1 4.526 8.3252 41 6.984127
## 2 3.585 8.3014 21 6.238137
## 3 3.521 7.2574 52 8.288136
## 4 3.413 5.6431 52 5.817352
## 5 3.422 3.8462 52 6.281853
## 6 2.697 4.0368 52 4.761658
##  AverageNoBedrooms Population AverageOccupancy Latitude Longitude
##H 1 1.0238095 322 2.555556 37.88 -122.23
## 2 0.9718805 2401 2.109842 37.86 -122.22
## 3 1.0734463 496 2.802260 37.85 -122.24
## 4 1.0730594 558 2.547945 37.85 -122.25
## 5 1.0810811 565 2.181467 37.85 -122.25
## 6 1.1036269 413 2.139896 37.85  -122.25



We now split the data into a training and a test set using a 80/20% split:

set.seed(10)

n <- nrow(HousingData)

trainIndices <- sample(l:n, nx*0.8)
HousingData.train <- HousingData[trainIndices,]
HousingData.test <- HousingData[-trainIndices,]

We can now split off a cross-validation set from the training set using another split:

n <- nrow(HousingData.train)

trainIndices <- sample(l:n, n*0.8)
HousingData.train.tr <- HousingData[trainIndices,]
HousingData.train.cv <- HousingData[-trainIndices,]

Note that there are several models in R which do CV automatically for you. In those cases we can pass
HousingData.train directly to the function which will split it off further.

Exercise: Run the above commands and inspect the size of each data set.

The right way of doing cross-validation

As we have seen above, each time we peak at the test data and adapt our model, we are effectively ‘learning’
from it. In the ideal case we should only look at the test data once at the end of our analysis when evaluating
the test error.

This might seem simple, but it is actually a very common mistake to not do this properly. We refer to the
chapter “The Wrong and Right Way to Do Cross-validation” (Sec. 7.10.2) of Elements for Statistical Learning
for more details.

Here we note a few very common mistakes:

e When starting our analysis with unsupervised learning, we might not split the data as we cannot
evaluate any test error anyhow. However, if we do for example a principle component analysis (PCA)
on the entire data set and then use the principle components as regressors in supervised models, then
we are doing cross-validation wrongly, even if we split up the data for the supervised learning part.
Instead we should have split up the data before doing the PCA.

e Several models, such neural networks, require us to normalise the data before training the model,
i.e. transforming each column of the data set to have mean 0 and variance 1. A very common pitfall is
to normalise the data first and then split the data set into training and test sets. Instead we should
split the data first, evaluate the mean and variance on the training data and then rescale the hold-out
set with respect to the mean and variance determined on the training set.

N-fold cross-validation

So far we have split the data in a training set and a cross-validation set using a single split, say for example a
80/20% split. Another way one could do cross-validation is to first split the data (after having hold out a test
set) into N sets of equal size. In the case of N=5, each set would contain 20% of the data. What we could

then do is to train the model on the set obtained when combining sets 1,2,...,N-1 and calculating the CV
error on set N. Next we train the model on sets 1,2,..., N-2, N combined and evaluate the CV error on set
N-1 etc. until in the final set we train the model on the combined set from 2,...,N and evaluate the CV error

on set 1. This is illustrated in the following figure:


http://www-stat.stanford.edu/~tibs/ElemStatLearn/
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In following the above procedure we obtain a total of N different estimates for the CV error. We combine
them by simply calculating the mean. Apart from calculating the mean we could also calculate the variance,
since the test error is now a random number. When tuning the flexibility of our model we generally follow
the so-called one-standard-deviation-rule, where we choose the least flexible model, where the test error
is within one standard deviation of the smallest test error.

Exercise: Split the Housing Data into a training set HousingData.train and test set HousingData.test.
(i) Split the training data further into a smaller training set HousingData.train.tr and a CV set
HousingData.train.cv. Train a lasso model (using glmnet () from the package with the same name) for
predicting the MedianHouseValue on the smaller training. Evaluate the CV error on the CV set. Use the
CV error for a range of values for the shrinkage to fine-tune the model. Having obtained the optimal value of
the shrinkage, retrain the model on the combined training and CV set. Finally, evaluate the test error on the
test set.

Exercise: Repeat the previous exercise using 10-fold cross-validation. There is a build-in function
cv.glmnet () which you can use directly on HousingData.train to do N-fold cross-validation.

Exercise (Optional): Write your own N-fold CV validation procedure using a for-loop. Repeat the previous
exercise using 10-fold cross-validation implemented with your own procedure.

In this section we introduced cross-validation and in particular N-fold cross-validation. In principle N-fold
cross-validation has better statistics than using a single split of the same size, e.g. 5-fold cross-validation vs a
single 80/20% split. However, N-fold cross-validation also requires one to train the model N times which
can be too computational intensive to be feasible. In other cases, there might be little gain in doing N-fold
cross-validation in which case one might prefer a single split for simplicity.

Decision trees

In this section we introduce decision trees which are covered in Chapter 8 of An Introduction to Statistical
Learning. Sometimes decision trees also go under the name CART (classification and regression trees).

So far most of the learning algorithms we discussed during the first module “Statistical learning for data
science: Basic Techniques using R” were linear models and variations thereof. The focus on this second
module “Statistical learning for data science: Advanced Techniques using R” will be on non-linear models.
Decision trees are our first example of non-linear models. A general difficulty in training non-linear models is
the fact that the corresponding optimisation problem is often highly non-convex which makes it difficult to
solve.


http://www-bcf.usc.edu/~gareth/ISL/
http://www-bcf.usc.edu/~gareth/ISL/

Regression trees

Let us again start with a toy example of simulated data. In the following, we give the code used to generate
the simulated data. For those relatively new to R it is instructive to try to understand each command. The

plot of the data points looks as follows:

set.seed(10)

x <- seq(0,10,by=0.1)

y <- c(rnorm(40,mean=5) ,rnorm(30,mean=2) ,rnorm(31,mean=4))
plot(y~x,col="red')

abline (h=mean(y))
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Imagine we
constant):

yi = f(zi) +e, flz)=a

would like to fit a very simple model to the data which just consists of an intercept (i.e. a

It is intuitively clear that the least squared estimator @ for a (or equivalent the maximum likelihood estimator)

is given by the mean

4 = mean(y)

This can also be easily proven, e.g. using the mathematical formalism from the appendix of Handout 1 from
the first module. The function f(x) = mean(y) is shown in the figure above (black horizontal line).

Imagine now that instead of fitting a constant function to the entire range for x we are allowed to fit different
constant functions to different intervals on the x-axis. Here is an example using three different intervals:
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If you look back at how the data was simulated, namely, normal random variables with mean 5 for
x=0,0.1,...,3.9, normal random variables with mean 2 for x=4,4.1, ..., 6.9 and normal random vari-
ables with mean 4 for x=7,7.1, ..., 10, then you see that this fit is actually very good. In principle, we can

approximate any non-linear function by making the intervals of our piecewise constant function small enough.

The above fit is in fact a result from fitting a regression tree to the above data! All one does in a regression
tree is to look for the split in the predictor space which leads to the largest decrease in RMSE when fitting a
constant function in each interval. This is done in a greedy approach, meaning that once one has found
a split, one keeps it and looks for the next best split etc. If one only performs binary splits, i.e. splits of
intervals in two parts, and performs each split in a greedy fashion, then the sequence of splits can be mapped
onto a binary decision tree. This is shown below:

X <3.95
I

X < 6.95

4.592

2.075 3.988
This is the decision tree corresponding to the previous plot. It is read as follows: Starting from the top
we check whether our observation has x < 3.95 or x > 3.95. If z < 3.95, we follow the left branch which
leads to a terminal node at which we predict y = 4.591. If x > 3.95, we follow the right branch, where we
encounter another decision node. If furthermore x < 6.95, we predict y = 2.075, whereas if x > 6.95, we
predict y = 3.988. The resulting piecewise constant function is the black line shown in the figure above.
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The above construction can easily be generalised to higher-dimensional models. Consider for example the
case where we have two predictors x; and x2. The idea is most easily explained using the following two
figures taken from ISLR:

Ry t

X

Ry

By

X X

We now consider partitions of the two dimensional predictor space, similar to the one-dimensional case, where
we partitioned the x-axis in different intervals. It is important to notice that using binary splits applied in a
greedy manner, we cannot obtain partition the predictor space as shown in the left part of the figure above,
but rather only partitions of the type as shown in the right part are possible.

The following figure shows the decision tree corresponding to the splits shown in the right part of the above
figure. It also shows an illustration of the corresponding piecewise constant function.

Xy =ty X, <ty

Ry R, Ry

R Rs
It is clear that the bigger the tree, the more flexible the model is. Thus, controlling the size of the tree is a
type of regularisation, which is usually referred to as pruning the tree. This can be done by introducing a

cost function which besides the residual sum of squares (RSS) has a penalty term proportional to the size of
the tree (number of vertices):

cost = RSS + « [tree-size
To train regression trees in R, we can use the tree package

library(tree)

Training is done using the function tree () (see 7tree for help):

reg.tree <- tree(MedianHouseValue ~. , data = HousingData.train)
summary (reg.tree)

11



##
## Regression tree:

## tree(formula = MedianHouseValue ~ ., data = HousingData.train)
## Variables actually used in tree construction:
## [1] "MedianIncome" "AverageNoRooms"  "AverageOccupancy"

## Number of terminal nodes: 7

## Residual mean deviance: 0.4997 = 7850 / 15710

## Distribution of residuals:

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -2.58000 -0.47450 -0.09655 0.00000 0.36250 3.80000

The function uses the standard R formulas, where MedianHouseValue ~. means MedianHouseValue as a
function of all predictors. We can make a plot of the decision tree:

plot(reg.tree)
text(reg.tree,cex=0.75)

Medianlncome <4.0712
|

Medianincdme < 2.663 Medianincome < 5.73765

AverageNoRopms < 3.82963AverageOccupancy < 2'26347AverageOccup incy < 2.64234

v 1o ] ]
1.642 1.089 3.2%5
2.424 1.651 2.778 2.108

To calculate the test error we make predictions on the test set using our trained regression tree and then
calculate the mean squared error:

pred = predict(reg.tree, newdata = HousingData.test)
mean ( (HousingData.test$MedianHouseValue-pred) ~2)

## [1] 0.5040067

The result is of the same order but slightly worse then the test error of our lasso model, which we trained in
the third lecture of the first module.

Exercise: Go in detail through the above commands, executing them on your machine and inspecting the
different outcomes.

The tree package as a build-in N-fold cross-validation functionality using the function cv.tree(). Once you
determined the optimal size of the tree using cross-validation, you can prune the tree using the prune.tree
function. Note that the cv.tree() uses deviance as a measure for the quality of fit, as opposed to RMSE or
MSE, but there is no problem in using deviance to determine the optimal size of the tree.

Exercise: Take the toy model of simulated data and fit a regression tree. Perform 10-fold cross-validation
and determine the optimal size of the tree. The cross-validation should result in a plot, similar to the following
plot for deviance as a function of size of the tree:

12
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Exercise: Perform a similar analysis as in the previous exercise for the regression tree trained on the Housing
Data. Having determined the optimal tree size, calculate the test error on the test set.

Classification trees

A nice aspect of decision trees is that we can easily also deal with categorial variables both in the predictors
as well as in the response variable. If the response variable is a categorial variable we call the model a
classification tree. The basic principle remains the same. As opposed to predicting a constant continuous
value for the response variable in a certain partition of the predictor space, we now predict a constant value
of the label. The loss function is then changed from RSS to a measure suitable for a categorial variable, such
as so-called cross-entropy or Gini-index.

Case study: Heart data

In this section we analysis a real-life data set. A similar analysis is also covered in Sec. 8.1.2 of the text book.
Thus if you cannot finish it on time you can revise it at home. If you do finish early and want to practice a
bit more, you could train a classification tree on the Arcene data set which we used in Lecture 3 of the first
module.

The data has 303 observations. The response variable is AHD, heart disease, yes or no. There are 13 predictors
include factors such as Sex, Age etc.

We start by importing the data

heart <- read.csv("Heart.csv")

Have a look at the data using head(), str() and View() (in RStudio).. You should see that there is some
pre-processing to be done:
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heart$X <- NULL

heart$AHD <- factor(heart$AHD)

heart$Sex <- factor(heart$Sex)

heart$Thal <- factor(heart$Thal)
heart$ChestPain <- factor (heart$ChestPain)

Exercise: Make sure that you understand the above commands.
We now split the data and training and test data:

set.seed(10)

n <- nrow(heart)

trainIndices <- sample(l:n, n*0.8)

heart.train <- heart[trainIndices,]
heart.test <- heart[-trainIndices,]

Before getting started let us have a look at the balance of labels

sum(heart.train$AHD=="'Yes') /nrow(heart.train)

## [1] 0.4710744

sum(heart.test$AHD=="'Yes')/nrow(heart.test)
## [1] 0.4098361
We see that both labels are rather balanced. It is important to check this, as for unbalanced data sets it is

possible to have apparently good misclassification rates without actually having trained a good model.

You can now fit a classification tree as follows:

heart.tree <- tree(AHD ~. ,data = heart.train)

summary (heart.tree)

#it

## Classification tree:

## tree(formula = AHD ~ ., data = heart.train)

## Variables actually used in tree construction:

## [1] "Thal" "Ca" "Age" "Oldpeak" "ChestPain" "Sex"
## [7] "MaxHR" "Chol" "RestBP"

## Number of terminal nodes: 17
## Residual mean deviance: 0.442 = 97.69 / 221
## Misclassification error rate: 0.1008 = 24 / 238

and plot the tree:

plot(heart.tree)
text (heart.tree,cex=0.5)

14
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Exercise: Your takes is to properly train a classification

tree on the heart data.

e Perform 10-fold cross-validation to obtain the optimal size of the classification tree and prune the tree

(Hint: use cv.tree and prune.misclass)
e Make a plot of the decision tree of optimal size

o Evaluate the test error (misclassification rate) on the test data

Depending on your pruning and loss function, your final tree might be:

Th?l:b
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Yes
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< 159.5

.

No
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The misclassification rate evaluated on the test data set should be around:

## [1] 0.2622951

Final remarks

Classification and regression trees are simple non-linear models which are easy to train and particularly easy

to interpret. In the next lecture we see how these models

can be made much more powerful when combining

them with ensemble techniques leasing to bagging, boosting and random forests. The previous models are

some of the most popular models in data mining.
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