
Statistical learning for data science: Handout 6
Stefan Zohren
9 May 2016

The content of this lecture is mainly based on Chapter 8 of An Introduction to Statistical Learning.

A short introduction to the bootstrap

The bootstrap was introduced by Efron in 1979. The name refers to Baron Munchhausen’s plan for getting
himself out of a swamp by pulling himself out by his bootstraps. This analogy will become clearer later. The
bootstrap is a powerful method, but at the same time it is computationally expensive which substantially
delayed its adoption.
The idea of the bootstrap is basically simple, but can be confusion if you see it for the first time. Imagine we
have n observation labelled i = 1,. . . ,n. We could create a new ‘synthetic’ data set by sampling from the
data with replacement. You can think of sampling with replacement from the data as if the observations
in the data were represented by balls in a bag. You take a ball out of the bag look at its label, write down
which one it was (sample) and then put it back into the bag (with replacement) before repeating the whole
procedure. This is illustrated in the left-hand-side of the following figure taken from An Introduction to
Statistical Learning:

You see that the original data-set has n=3 observation labelled i = 1,2,3. We now sample from the data with
replacement. In the first sampling Z1 we selected third observation, then the first and then the third. You
see that observation 2 is not present in the new ‘synthetic’ data set while observation 3 is represented twice.
The whole procedure is repeated B times to generate B synthetic or bootstrapped data sets Z1, ..., ZB .
We observe that some observations are included more than once in a given new ‘synthetic’ data set, while
others are not present, e.g. in Z1, observation 3 appears twice, while observation 2 is not present. If the size
of the original data set is large then on average approximately 2/3 of the observation will be present in a
given ‘synthetic’ or bootstrap data set.
Exercise (optional): Prove this.

1

http://www-bcf.usc.edu/~gareth/ISL/
http://www-bcf.usc.edu/~gareth/ISL/
http://www-bcf.usc.edu/~gareth/ISL/

In statistical learning we generally assume that our data comes from a given distribution f , often written as
an underlying true model plus noise. Each data set is then a sample from the distribution. In the cases where
we simulated our own we actually know what the underlying distribution is and we can sample as many data
sets as we like. In real-life situations, we cannot simply go and get more data. However, we can construct
from our data an estimator of our distribution f , namely empirical distribution f̂ obtained from our data
point. Even though we do not know f we can use f̂ to sample new data. This is exactly the bootstrap, as
resampling from the data with replacement is nothing else than sampling from the empirical distribution f̂ .

The bootstrap has several important usages. For example:

• Using bootstrap techniques one can obtain confidence intervals of estimators or even the entire
distribution over estimators. For example in linear regression, the lm function provides you with
confidence intervals on the estimated parameters (intercept,slopes). The result for the confidence
interval is based on an analytical formula which relies on a normality assumption of the errors. In
some case we do not want to make such an assumption or a similar analytical calculation might not be
possible at all. In those cases we can still use the bootstrap. We simple resample a number of bootstrap
data sets (often 100-1000). We then run our learning algorithm on each each of the data sets, which
results in one estimate for each set, see e.g. the right-hand-side of the above figure. The we can simply
calculate the standard error of those estimates to construct a confidence interval. We could even make
a histogram to obtain an estimate of the entire distribution.

• Another application of the bootstrap is in prediction and in particular to reduce the variance of
the predictor by averaging various predictors. We can train a model on each of the bootstrap
data sets and then make a prediction using this model. This leads to B different predictions. We can
then for example take the mean of the B predictions to obtain our final prediction. In particular, such
a technique can be used to reduce the variance of the predictor. Is is also important to note that to use
the bootstrap to reduce the variance of our predictor we should have a very flexible model with low
bias and high variance.

The second use case will be important for the models we will be discussing in this lecture. Let us illustrate it
briefly.

For the illustration we return to the toy example from last class:

set.seed(10)
x <- 1:10
f <- function(x) { 2 + 0.2*(x-5)^2 }
y <- f(x)+rnorm(10)

Here we plot the data, the underlying function, as well as the fit to a polynomial of order 10:

2

2 4 6 8 10

0
2

4
6

8
10

x

y

Using bootstrap techniques we can now resample from the data and repeat the above training B=100 times.
The resulting predictions are averaged yielding the following plot:

2 4 6 8 10

0
2

4
6

8
10

x

y

The above led to a reduction in the variance of our predictor. Note however that this is only a mild
improvement, which has in part to do with the fact that our original data set is only very small.

Exercise: This exercise has to do with the first use case of the bootstrap. Execute the above commands to
generate the data. Using the lm function fit the a linear regression with y being the response variable and x
the predictor. Inspect the summary output of your fit. Read off the confidence interval of the intercept and
slope. Your task is to obtain the confidence interval using bootstrap techniques. Creating B=100 bootstrap
data sets. You can write this procedure by hand or you use boot() function from the boot package (You
will have to wrap the entire procedure you want to repeat B times into a function). Also make a histogram of
your 100 estimates for the intercept and slope respectively. You can find more information in chapter 5.2 of

3

An Introduction to Statistical Learning. (Variation: Instead of the generated toy data, you can also use
the California Housing Data.)

Bagging, random forests and boosting

Short revision decision trees

Let us briefly revise the idea of decision trees, as all model we discuss in this lecture are tree-based models.
Recall that all a tree does is fitting constant value for the response variable to different partitions of the
predictor space. This is done in a greedy fashion, where we first determine the best binary split of the
predictor space, then, given this split, determine the next best split etc.

Recall the example from last class which used a one-dimensional predictor space and two splits.

0 2 4 6 8 10

1
2

3
4

5
6

x

y

The resulting function can be represented by a binary decision tree as we discussed last class:

|x < 3.95

x < 6.95
4.592

2.075 3.988

4

http://www-bcf.usc.edu/~gareth/ISL/

Decision trees have many advantages:

• They are very simple and the way prediction is done is very clear. This can be an advantage, especially
when used in legal context, where the way the decision/prediction was made can easily be explained
to a judge. This is for example used by credit card companies to determine default probabilities and
potentially refuse credit based on this decision.

• Another very strong point of decision trees we have seen is that they can be used with heterogeneous
data. We can use essentially the same model for regression and classification and furthermore the
predictors can be of various types including numerical variables, categorial variables, etc.

Disadvantages of decision trees are mainly:

• Decision trees are limited in their predictive power.

We now see how we can use ensemble methods to improve the predictive power of decision trees, while
maintaining some of their advantages.

Bagging

Bagging is nothing else than applying the idea of using the bootstrap to reduce the variance predictors to
decision trees.
Mathematically speaking the estimator for the response variable obtained from a decision tree with M leaves
is:

ŷ = f̂(x) =
M∑

i=1
âi1x∈R̂i

Here R̂1, ..., R̂m is the optimal partition of the predictor space and âi = mean({all yj s.t. xj ∈ Ri}) is the
predicted response in this partition. In the tree shown above we have R̂1 = {x|x < 3.95}, R̂2 = {x|3.95 <
x < 6.95} , R̂3 = {x|x > 6.95}, as well as â1 = 4.592, â2 = 2.075, â3 = 3.988.

We now repeat the training of a decision tree on B bootstrap data sets, resulting in B predictors f̂ b(x),
b = 1, ..., B. We can then calculate the final predictor by averaging:

f̂(x) = 1
B

B∑
b=1

f̂ b(x)

The above determines the final predictor when applying bagging to regression trees where the response
variable is numerical allowing us to average it. In the case of bagging for classification trees we would
instead obtain B predictions for the label at a given point which generally we would aggregate using majority
voting.
There is a very nice aspect of the bootstrap in the context of bagging, that we have not yet stressed. We have
seen earlier that on average only 2/3 of the data are present in a given bootstrap data set. We can use this
fact in a very nice way, namely, we can use the remaining 1/3 of the data and treat it as a cross-validation set
for this bootstrap sample. The cross-validation error calculated using this set is called the out-of-bag-error.
The nice thing is that we get it basically for free!
We now illustrate with the California Housing Data how to do bagging in R. We import the data and split it
in training and test set as follows:

5

set.seed(10)
HousingData <- read.csv("California-Housing.txt")
n <- nrow(HousingData)
trainIndices <- sample(1:n, n*0.8)
HousingData.train <- HousingData[trainIndices,]
HousingData.test <- HousingData[-trainIndices,]

In the previous class we fitted a regression tree to predict MedianHouseValue as a function of all predictors:

library(tree)
reg.tree <- tree(MedianHouseValue ~. , data = HousingData.train)

The test MSE was obtained as:

pred.tree = predict(reg.tree, newdata = HousingData.test)
mean((HousingData.test$MedianHouseValue-pred.tree)^2)

[1] 0.5040067

Bagging is implemented in the package randomForest (together with random forests which we will discuss
next). We now fit a bagging model using B=100 bootstrap data sets, each of which will have a regression
tree trained on it:

library(randomForest)
To do bagging we miust set mtry = numer of predictors, 8 in our case (more later)
reg.bag = randomForest(MedianHouseValue ~. ,data=HousingData.train, mtry=8,

importance =TRUE,ntree=100)

We can now calculate the test error:

pred.bag = predict(reg.bag, newdata = HousingData.test)
mean((HousingData.test$MedianHouseValue-pred.bag)^2)

[1] 0.2123544

Exercise: Repeat the above analysis. In particular, also look at the outputs and summaries of each of the
expressions, e.g. inspect the output of pred.bag and summary(pred.bag) etc.

We see the the improvement of the test MSE which was about 0.5 for a single regression tree and 0.4 for the
lasso and rigid regression.

Random forests

Random forests are very similar to bagging. We can think of them as bagging with a small tweak. As we
have seen above, in bagging we use the bootstrap to generate several bootstrap sample of the data and train
a decision tree on each of the bootstrap data sets (a forest of trees, one for each bootstrap sample). We then
average the predictors to get the final predictor. A potential problem is that the individual predictors in
bagging can be highly correlated. For example, if there are a few predictors which explain the response
variable very well, we will always make splits using those predictors first and thus the upper part of our
tree will most likely be the same each time. This creates a high degree of correlation in our predictors

6

(decision trees) which tend to be very similar. We are also let to focus highly on the dominant predictors
and ignore the less dominant predictors. Since the decision trees are correlated it is harder to reduce the
variance by averaging. One goal is thus to make the individual decision trees trained on the bootstrap data
sets less correlated. This is done in random forests as follows: instead of using all predictors each time
we train a decision tree on a bootstrap data set, we allow each individual training procedure to only use a
smaller random set of the predictors. In practice, each individual tree is only trained using a fraction of the
size (number of predictors used) =

√
(total number of predictors) sampled from the entire set of predictors.

When the number of predictors used is equal to the total number of predictors, then the random forest is
equivalent to bagging. The number of predictors used is set in the randomForest function using the attribute
mtry. We already used this function and the attribute above when doing bagging, only that we set mtry=8
which was the total number of predictors. We can now train a random forest in the exact way as we did
before, by simply reducing the number of predictors used.

reg.forest = randomForest(MedianHouseValue ~. ,data=HousingData.train, mtry=3,
importance =TRUE,ntree=100)

pred.forest = predict(reg.forest, newdata = HousingData.test)
mean((HousingData.test$MedianHouseValue-pred.forest)^2)

[1] 0.2033348

We see a slight improvement in the error as compared to the MSE for bagging. This reduction can be more
pronounced when having more predictors.

• Note that both in bagging as well as in random forests we should not prune the trees. Instead we train
large flexible trees with individual low bias and high variance and use the averaging procedure to reduce
the variance when going to the predictor.

• Considering the above comment, we observe that bagging and random forests do not require sophisticated
fine-tuning of hyper-parameters: We would always want to use as many predictors as possible, as many
trees as is computational reasonable and the optimal number of predictors used in random forests is
the square root of the total number of predictors.

Boosting

Boosting (when applied to trees) is a method similar to bagging, where we train many decision trees on
different variations of the original data set. However, in boosting we do not use the bootstrap to create new
data sets, instead, in boosting new data sets are created in a sequential manner.

The detailed algorithms is explained in Algorithm 8.2 of An Introduction to Statistical Learning. We only
explain the basic idea behind the algorithm here. The hyper-parameters of the model are the number of
splits d and a shrinkage parameter λ.

The boosting algorithm then works as follows:

• Fit a decision tree to the data with the given number of splits
• Update the current predictor by adding the new predictor weighted by the shrinkage
• Update the data by ‘subtracting’ the variance explained by the new tree weighted by the shrinkage
• Repeat

When doing the above algorithm one usually choose a small value for d. The idea is that one learns many
times a little at a time, always updating the data. However, even though each individual tree is small
(sometimes only a single stem) the resulting ensemble of trees is a powerful predictor.

7

http://www-bcf.usc.edu/~gareth/ISL/

In R boosting is implemented in the gbm package through the gbm() function. The number of splits is given
by the attribute interaction .depth and the shrinkage λ by the attribute shrinkage. Here we show an
implementation of boosting in R. In the example we simply set d = 3 and λ = 0.2. In real-life you should use
cross-validation to obtain the best values.

library(gbm)
reg.gbm <- gbm(MedianHouseValue ~. ,data=HousingData.train,

distribution= "gaussian", n.trees=2000,
interaction.depth = 3, shrinkage = 0.2, verbose =F)

pred.gbm = predict(reg.gbm, newdata = HousingData.test,n.trees=2000)
mean((HousingData.test$MedianHouseValue-pred.gbm)^2)

[1] 0.183273

We see that the error is yet another improvement over the best previous error obtained using random forests.

As a final remark, note that boosting can also be applied to other models apart from decision trees, see The
Elements of Statistical Learning for more details.

Case study: Heart data (continued)

We continue our case study on the Heart data set. Recall that the data set has 303 observations. The response
variable is AHD, heart disease, yes or no. There are 13 predictors include factors such as Sex, Age etc.

We repeat the sequence of commands from last lecture to import the data, process it and split it in training
and test set:

heart <- read.csv("Heart.csv")
heart$X <- NULL
heart$AHD <- factor(heart$AHD)
heart$Sex <- factor(heart$Sex)
heart$Thal <- factor(heart$Thal)
heart$ChestPain <- factor(heart$ChestPain)
set.seed(10)
n <- nrow(heart)
trainIndices <- sample(1:n, n*0.8)
heart.train <- heart[trainIndices,]
heart.test <- heart[-trainIndices,]
n <- nrow(heart.train)
trainIndices <- sample(1:n, n*0.8)
heart.train.tr <- heart.train[trainIndices,]
heart.train.cv <- heart.train[-trainIndices,]

Exercise: Train a bagging model, a random forest as well as a boosting model on the data. Compare
the models in performance. For boosting you will have to to proper cross-validation to fine-tune the
hyper-parameters. We already split off a CV set above.

Exercise: Create a plot of MSE as a function of number of trees used for each of the three different learning
algorithms. Compare them using a single plot.

8

http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://www-stat.stanford.edu/~tibs/ElemStatLearn/

	A short introduction to the bootstrap
	Bagging, random forests and boosting
	Short revision decision trees
	Bagging
	Random forests
	Boosting
	Case study: Heart data (continued)

