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Overview of this course

This course, “Data Wrangling with R”, is about how to handle potentially large and messy data sets in R. We
see how to use short scripts and commands to perform advanced manipulations on the data.

The kind of techniques covered in this course are often the first steps in any data analysis process. This step
is usually followed by exploratory data anlysis, often using visualisations, and data analytics. We do not over
visualisations and analytics in this course. There are other courses offered by IT-services which deal with
those topics, including a course on Visualisations and two courses on Statistical Learning for Data Science.

Whether you are new to R or an experienced user, the here presented techniques will hopefully help to save
you time and efforts in the future.

The topics covered in this course are:

• Getting started with R

– Installation and Packages
– Basic commands
– Vectors, matrices and lists
– Data frames
– Basic programming

• Importing, exporting and manipulating data with R

• Packages for advanced data wrangling

– Manipulating data with reshape2
– Manipulating data with dplyr
– From data frames to data.table
– Interacting with databases using SQLite and dplyr
– A short comment on web-based formats using XML and jsonlite

Getting started with R

Installation and Packages

You can download R from The Comprehensive R Archive Network cran.r-project.org and RStudio from
rstudio.com. Both are free software.

For many people RStudio is the preferred GUI for R. It has a very similar layout to Matlab. Alternatively,
you can also use the R application which comes with the official R distribution. In this case, you might want
to use it together with a text editor to copy over commands. You can also use R using the command line
which will be necessary for example when using it on ARC. You can write R scripts in any editor; Emacs is a
good command line editor with syntax highlighting for R. You can find a help document on how to use R on
the ARC cluster at Oxford here. Whenever using R on the command line you run it via RScript file.R
<optional arguments>.
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In many cases you want to install packages for advanced analysis. Standard functions are part of the base
package which is automatically loaded when starting R. The quality of packages varies widely and you might
want to investigate a bit before settling on a given package. A useful reference is CRAN and in particular
CRAN Task View which has commented list of packages for different applications fields, i.e. Bayesian analysis.

Packages can be installed from the Package installer in the application or using the command

install.packages("package_name")

At the beginning of your session or script you then load the package using

library("package_name")

For this class, you have to install the following packages:

install.packages("reshape2")
install.packages("magrittr")
install.packages("dplyr")
install.packages("data.table")
install.packages("SQLite")

Basic commands

One of the most useful command is ? which opens a window with help. For example, you see later that a
linear regression is fitted using the command lm (linear model). If you do not know exactly how it works just
type

?lm

to get a detailed help window on everything from syntax and parameter settings, to references and code
examples.

You can use R interactively as a calculator, i.e.

3+sqrt(2)

## [1] 4.414214

returns the value of 3 +
√

2.

We can assign values to variables using the assignment operator <-

x <- 3
y <- 4.5
x+y

## [1] 7.5

We can also evaluate logical clauses
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x == 3

## [1] TRUE

A useful command to examine objects is the str (structure) command

str(x)

## num 3

We see that R by default made x a numeric (double) variable. We could change it to be of type integer by
invoking the command

x<-as.integer(x)
str(x)

## int 3

Vectors, matrices and lists

Often we want to work with vectors which we can create through:

vec<-c(25,28,1.85,1.70,90,75)

Let us again look at the structure

str(vec)

## num [1:6] 25 28 1.85 1.7 90 75

It is a numeric (double) vector with entries indexed by 1,..,6. Observe that, as opposed to C/C++ or Python,
indices start at 1. To reference a given entry we can call vec[1] to get the first element.

Three very useful functions are :, rep and seq

vec1<-1:10
vec2<-rep(0,10)
vec3<-seq(0,5)

The first produces the sequence

vec1

## [1] 1 2 3 4 5 6 7 8 9 10

Exercise: Try them out and inspect what the remaining two functions are doing.

We can also slice vectors (and later matrices) using
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vec[3:5]

## [1] 1.85 1.70 90.00

This can also be done using TRUE and FALSE vectors, i.e.

vec[c(FALSE,FALSE,TRUE,TRUE,TRUE,FALSE)]

## [1] 1.85 1.70 90.00

We can also return, all but a given index i using

vec[-1]

## [1] 28.00 1.85 1.70 90.00 75.00

which returns the vector without the first element, i.e. the - in front of the index removes it. This will be
useful later when constructing training and test data sets.

Exercise: What does vec1[vec1%%2==0] give you? Explain the result.

Another important function is length which returns the lengths of a vector. We can also produce matrices,
for example

M<-matrix(vec,ncol=3)

## [,1] [,2] [,3]
## [1,] 25 1.85 90
## [2,] 28 1.70 75

You see that the function by default fills the matrix column by column; you can change this by adding the
argument byrow=TRUE, see ?matrix for more information. The labelling in the above output also suggests to
you how to slice the matrix, e.g. M[1,1] for the upper left element, M[1,] for the first row, or M[2,2:3] for
a vector containing the second and third element of the second row.

Note that operators like +,-,*,/ are implemented element-by-element. To do for example a matrix
multiplication you use the command %*%.

R has the properties that it extends objects for you to higher dimensions which can be very useful, but you
have to be aware of it.

Exercise: Check was vec+1 and M+1 gives you.

Finally, sum is a useful command, which sums entries of an object element-by-element. For example

sum(vec)/length(vec)

## [1] 36.925

which is the same as mean(vec). Yet another example, sum(M[1,]*M[2,]) is a way to calculate the vector
inner product (~x · ~y = x1y1 + ... + xnyn) of the first and second row vector of M.

Exercise: Look up what the functions dim, nrow and ncol do (if it is not already obvious from the name)?

We have already discussed vectors and matrices. A list is similar to a vector, but allows to store arbitrary
objects in it. For example we could store the above vector and Matrix both in a list:
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l <- list(v=vec,m=M)
l

## $v
## [1] 25.00 28.00 1.85 1.70 90.00 75.00
##
## $m
## [,1] [,2] [,3]
## [1,] 25 1.85 90
## [2,] 28 1.70 75

Here each element of the list has a name, in our case v and m and we can use those names to access the
elements, e.g.

l$v

## [1] 25.00 28.00 1.85 1.70 90.00 75.00

Lists can for example be used by functions to return various results using a sinlge R object.

Data frames

The standard container of data in R is a data.frame, which is basically a table with additional attributes
such as column and row names, etc. For example, we can create a data frame from our matrix of the previous
section.

colnames(M)=c("age","height","weight")
data<-as.data.frame(M)
data

## age height weight
## 1 25 1.85 90
## 2 28 1.70 75

We can still reference the first column using data[,1], but we can also use data['age'] or data$age. We
will see later that the latter will be preferred when writing out mathematical expressions for data, i.e. height
~ weight which reads height as a function of weight.

We can add new columns as well, for example

data$weightOheight <- data$weight/data$height
data

## age height weight weightOheight
## 1 25 1.85 90 48.64865
## 2 28 1.70 75 44.11765

A very useful function for similar tasks is apply (or lapply or mapply). For example, we can quickly calculate
the mean of every column and return it as a row vector:
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apply(data,2,mean)

## age height weight weightOheight
## 26.50000 1.77500 82.50000 46.38315

It applies the function mean to all columns of the data frame data (here the second argument, 1 or 2, stands
for rows or columns). Note that those functions are vectorised, which makes them not only easier to read,
but also faster than say writing for-loops which run over the data frame.

Let us add another column

data$sex <- c("M","M")
data

## age height weight weightOheight sex
## 1 25 1.85 90 48.64865 M
## 2 28 1.70 75 44.11765 M

Let us inspect the data frame using the structure command:

str(data)

## 'data.frame': 2 obs. of 5 variables:
## $ age : num 25 28
## $ height : num 1.85 1.7
## $ weight : num 90 75
## $ weightOheight: num 48.6 44.1
## $ sex : chr "M" "M"

We see that the last column (sex) is of type character. However, this is not appropriate for say classification
tasks. We must make sure that R knows that we are speaking of a categorial variables (male or female). The
labels of those could even be numbers, say person of type 1 and 2. In R such a variable type is called factor.
We can change the type using the as.factor function

data$sex <- as.factor(data$sex)
str(data)

## 'data.frame': 2 obs. of 5 variables:
## $ age : num 25 28
## $ height : num 1.85 1.7
## $ weight : num 90 75
## $ weightOheight: num 48.6 44.1
## $ sex : Factor w/ 1 level "M": 1 1

We see that now sex is a factor. When importing data, we must make sure that variables of the correct type.
Invoking the structure function for inspection helps.

If we want to delete a row we can set it to NULL, i.e. data$weightOheight <- NULL. We can also use NULL
to initialise empty variables (like an empty vector).

Tip: We are not discussing the detailed plotting functionalities of R in this course, but you should be aware
of the fact that plot(data) produces a simple scatter plot of the data which can be useful for inspection.
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Basic programming

The most common programming functionality you will be using, are probably loops and the ability to
write your own functions. R has many more functionalities, including ways of implementing object oriented
programming, but we will not go into it here.

Let us look at a simple example, a function to calculate the mean of a vector:

my.mean <- function(vector){
n=length(vector)
sum=0
for(i in 1:n){

sum = sum+vector[i]
}
sum/n

}
# Example: Mean of (1,2,3,4,5,6):
my.mean(1:6)

## [1] 3.5

Note that R automatically returns the output of the last command; there is no need to call return. A major
application, where you would like to write your own function is to use them in apply similar to what we
discussed above, i.e. apply(data,2,my.mean).

Tip: In R you can use the commands print and cat for printing on the screen. If you are trying to implement
a function or a loop and are getting unexpected results, one of the best debugging tools is to put print
statements of intermediate results into the functions.

Exercise: If you give a vector with a NA entry to my.mean it will return NA as a result. Write a new my.mean
function which has a second argument, let’s call it rm.na which if FALSE invokes my.mean as above, but
which if it is TRUE removes the NA values from the vector and then calculates the mean on the reduced vector.
(Optional: You would probably implement the function as my.mean <- function(vector,rm.na) which is
called using say my.mean(c(1,2,NA,4),TRUE). Alternatively, in R you could also define a function as my.mean
<- function(vector,...) where ... is a placeholder for optional arguments. You could write it in such
a way that it would accept both calls like my.mean(c(1,2,3,4)) or my.mean(c(1,2,3,4),na.rm=TRUE),
where in the first case you provide a default value to na.rm.)

Importing, exporting and manipulating data with R

Probably the easiest way of importing and exporting data in R is using the read.csv and write.csv
commands. You can also import and export Excel files directly using the xlsx package, but it is generally
better to use the .csv files as an universal exchange medium.

Let us download a data set flights14.csv which we will use later. You should save the data set in your working
directory.

We can import the data using the command:

flights <- read.csv("flights14.csv")

The data set contains detailed information on flights leaving airports in New York City in 2014. You can
inspect the data using the following commands:

7

https://github.com/arunsrinivasan/flights/wiki/NYCflights14/flights14.csv


head(flights)

## year month day dep_time dep_delay arr_time arr_delay cancelled carrier
## 1 2014 1 1 914 14 1238 13 0 AA
## 2 2014 1 1 1157 -3 1523 13 0 AA
## 3 2014 1 1 1902 2 2224 9 0 AA
## 4 2014 1 1 722 -8 1014 -26 0 AA
## 5 2014 1 1 1347 2 1706 1 0 AA
## 6 2014 1 1 1824 4 2145 0 0 AA
## tailnum flight origin dest air_time distance hour min
## 1 N338AA 1 JFK LAX 359 2475 9 14
## 2 N335AA 3 JFK LAX 363 2475 11 57
## 3 N327AA 21 JFK LAX 351 2475 19 2
## 4 N3EHAA 29 LGA PBI 157 1035 7 22
## 5 N319AA 117 JFK LAX 350 2475 13 47
## 6 N3DEAA 119 EWR LAX 339 2454 18 24

tail(flights)

## year month day dep_time dep_delay arr_time arr_delay cancelled
## 253311 2014 10 31 1653 18 1910 -14 0
## 253312 2014 10 31 1459 1 1747 -30 0
## 253313 2014 10 31 854 -5 1147 -14 0
## 253314 2014 10 31 1102 -8 1311 16 0
## 253315 2014 10 31 1106 -4 1325 15 0
## 253316 2014 10 31 824 -5 1045 1 0
## carrier tailnum flight origin dest air_time distance hour min
## 253311 UA N28478 1739 EWR LAS 291 2227 16 53
## 253312 UA N23708 1744 LGA IAH 201 1416 14 59
## 253313 UA N33132 1758 EWR IAH 189 1400 8 54
## 253314 MQ N827MQ 3591 LGA RDU 83 431 11 2
## 253315 MQ N511MQ 3592 LGA DTW 75 502 11 6
## 253316 MQ N813MQ 3599 LGA SDF 110 659 8 24

dim(flights)

## [1] 253316 17

str(flights)

## 'data.frame': 253316 obs. of 17 variables:
## $ year : int 2014 2014 2014 2014 2014 2014 2014 2014 2014 2014 ...
## $ month : int 1 1 1 1 1 1 1 1 1 1 ...
## $ day : int 1 1 1 1 1 1 1 1 1 1 ...
## $ dep_time : int 914 1157 1902 722 1347 1824 2133 1542 1509 1848 ...
## $ dep_delay: int 14 -3 2 -8 2 4 -2 -3 -1 -2 ...
## $ arr_time : int 1238 1523 2224 1014 1706 2145 37 1906 1828 2206 ...
## $ arr_delay: int 13 13 9 -26 1 0 -18 -14 -17 -14 ...
## $ cancelled: int 0 0 0 0 0 0 0 0 0 0 ...
## $ carrier : Factor w/ 14 levels "AA","AS","B6",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ tailnum : Factor w/ 3784 levels "D942DN","N0EGMQ",..: 747 737 702 1205 679 1181 689 705 2145 1285 ...
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## $ flight : int 1 3 21 29 117 119 185 133 145 235 ...
## $ origin : Factor w/ 3 levels "EWR","JFK","LGA": 2 2 2 3 2 1 2 2 2 2 ...
## $ dest : Factor w/ 109 levels "ABQ","ACK","AGS",..: 53 53 53 75 53 53 53 53 62 94 ...
## $ air_time : int 359 363 351 157 350 339 338 356 161 349 ...
## $ distance : int 2475 2475 2475 1035 2475 2454 2475 2475 1089 2422 ...
## $ hour : int 9 11 19 7 13 18 21 15 15 18 ...
## $ min : int 14 57 2 22 47 24 33 42 9 48 ...

Exercise: Execute the above commands and inspect the output.

Exercise: Inspect the various options the read.csv function has.

Exercise: How many NA values does the data frame has? (Hint: Use the functions is.na() and sum().)

We can easily subset and query the data. For example, the following command gives the total number of
flights by American Airlines:

sum(flights$carrier == 'AA')

## [1] 26302

We can select only those rows from the data frame and save it into a new data frame called flights.AA:

flights.AA <- flights[flights$carrier == 'AA',]

Exercise: Execute the above commands. Furthermore, export the data frame flights.AA, containing only
the American Airlines flights, using write.csv. If you regularly use Excel, make sure that you can open the
.csv file in Excel.

Exercise: (Optional) Using a for loop which runs over month in 1:12, write a script which takes all obser-
vations of flights from American Airlines in a given month and saves them in a file flights-AA-2014-MM.csv,
where MM should be the corresponding month. (Hint: Use the commands eval, parse and paste.)

Using R we can effectively compute on rows and columns. For example the mean departure delay of a all
flights (rows) is given by

mean(flights$dep_delay)

## [1] 12.46526

Exercise: Calculate the mean distance of all flights, as well as its standard deviation?

We can also compute on columns and furthermore create new columns which are dynamically obtained from
computations on other columns. For example, we can calculate the gain = arr_delay - dep_delay as a
difference on arrival delay minus departure delay and add this information as a new column to the data frame

flights$gain <- flights$arr_delay - flights$dep_delay
head(flights)

## year month day dep_time dep_delay arr_time arr_delay cancelled carrier
## 1 2014 1 1 914 14 1238 13 0 AA
## 2 2014 1 1 1157 -3 1523 13 0 AA
## 3 2014 1 1 1902 2 2224 9 0 AA
## 4 2014 1 1 722 -8 1014 -26 0 AA
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## 5 2014 1 1 1347 2 1706 1 0 AA
## 6 2014 1 1 1824 4 2145 0 0 AA
## tailnum flight origin dest air_time distance hour min gain
## 1 N338AA 1 JFK LAX 359 2475 9 14 -1
## 2 N335AA 3 JFK LAX 363 2475 11 57 16
## 3 N327AA 21 JFK LAX 351 2475 19 2 7
## 4 N3EHAA 29 LGA PBI 157 1035 7 22 -18
## 5 N319AA 117 JFK LAX 350 2475 13 47 -1
## 6 N3DEAA 119 EWR LAX 339 2454 18 24 -4

Exercise: Calculate the speed using the air time and the distance travelled. Add a new column for speed to
the data frame.

Exercise: How many flights from American Airlines had delays in the departure of over 30 minutes? Is
the percentage of such flights with delays of over 30 minutes for American Airlines higher than the general
percentage for all airlines?

Exercise: Read about the function grep. Type ?grep for help. Select all rows where the flight number
contains the initials of your name.

Exercise: Read about the functions paste and paste0. Create a new column date where the date is given
in the form DD-MM-YYYY and a time column where the time is given in the form HH:MM.

Packages for advanced data wrangling

Manipulating data with reshape2

reshape2 is a package by by Hadley Wickham. It is a newer and faster version of the package reshape. One
of the main functionalities of the package is the capability to transform data frames from a wide format to a
long format and vice-versa. The is done using the functions melt and cast respectively. Below we explain
those functionalities.

The example presented here is based on the paper:

• Reshaping data with the reshape package, by H. Wickham, in J. Stat. Software (2007).

The main functions of the package are:

• melt
• cast (became dcast and acast in reshape2)

Loading the package and example data

We now load the package. It comes with a data set french_fries which is used as a case-study in the
above article describing the package’s functionalities. Funnily enough, the data set contains results from
an experiment where different persons (subject) had to judge the quality in taste of chips which had been
cooked using different fryers (rep). The data is included in the reshape2 package and ?french_fries gives
you a detailed description of the data:

library(reshape2)
data(french_fries)
head(french_fries)
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## time treatment subject rep potato buttery grassy rancid painty
## 61 1 1 3 1 2.9 0.0 0.0 0.0 5.5
## 25 1 1 3 2 14.0 0.0 0.0 1.1 0.0
## 62 1 1 10 1 11.0 6.4 0.0 0.0 0.0
## 26 1 1 10 2 9.9 5.9 2.9 2.2 0.0
## 63 1 1 15 1 1.2 0.1 0.0 1.1 5.1
## 27 1 1 15 2 8.8 3.0 3.6 1.5 2.3

Melting: Transforming data from wide to long

The first step in transforming data using the reshape2 package is to ‘melt’ the data from a wide to a long
format. What we mean by this is probably best illustrated in an example

chips.m <- melt(french_fries, id = 1:4)
head(chips.m)

## time treatment subject rep variable value
## 1 1 1 3 1 potato 2.9
## 2 1 1 3 2 potato 14.0
## 3 1 1 10 1 potato 11.0
## 4 1 1 10 2 potato 9.9
## 5 1 1 15 1 potato 1.2
## 6 1 1 15 2 potato 8.8

We see that we kept the first four columns, as we specified by id = 1:4. However the remaining variables
are now specified in two columns variable and values.

Exercise: Execute the commands and understand how the original and molten data frame are related.

Exercise: Use the function dim() to get the dimensions of each data frame. Check that the long (molten)
data frame chips.m has fives times as many rows as the original data frame. Why is this?

Casting: Transforming data from long to wide

Having molten the data, we can now cast it back into wide format using different prescriptions. This is done
using the dcast function. The cast function takes as arguments a formula similar to the formula used in
e.g. linear regression. For example, treatment ~ variable means treatment as a function of variable.
We can use this to calculate for example the mean for each variable given a treatment:

chips.c <- dcast(chips.m, treatment ~ variable, mean, na.rm=TRUE)
chips.c

## treatment potato buttery grassy rancid painty
## 1 1 6.887931 1.780087 0.6491379 4.065517 2.583621
## 2 2 7.001724 1.973913 0.6629310 3.624569 2.455844
## 3 3 6.967965 1.717749 0.6805195 3.866667 2.525541

Exercise: Execute the above commands and see that you understand the usage of the dcast function.

Exercise: To appreciate the benefits of the reshape2 package, obtain the same results as above without
using reshape2. Instead, start from the original data frame and use subsetting in combination with the
apply function.

Exercise: Using the dcast function, construct a table which shows for each tuple (treatment,rep) the
number of observations with this property.
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Manipulating data with dplyr

We now look at more modern packages for data manipulation. The package dplyr, which we discuss in this
section, as well as data.table which we discuss in the next section are both very fast C++ based packages
which can be used to query and operate on data in memory.

In this exposition we follow the package vignette:

• Introduction to dplyr, by H. Wickham and R. Francois, Package Vignette CRAN.

The main functions of the package are:

• filter
• arrange
• select
• mutate
• summarise
• Pipes from magrittr

There are also functionalities to sample from the data which can be very useful for very large data sets.

Loading the package and sample data

We load the package:

library(dplyr)

Here we follow very closely the package’s vignette in the exposition of the package’s functionalities and use
the data set on flight data flights14.csv from the previous section for illustration. The is very similar to the
data set which comes with the package nycflights13 which is used in the package’s vignette. We import
the data as before:

flights <- read.csv("flights14.csv")
head(flights)

## year month day dep_time dep_delay arr_time arr_delay cancelled carrier
## 1 2014 1 1 914 14 1238 13 0 AA
## 2 2014 1 1 1157 -3 1523 13 0 AA
## 3 2014 1 1 1902 2 2224 9 0 AA
## 4 2014 1 1 722 -8 1014 -26 0 AA
## 5 2014 1 1 1347 2 1706 1 0 AA
## 6 2014 1 1 1824 4 2145 0 0 AA
## tailnum flight origin dest air_time distance hour min
## 1 N338AA 1 JFK LAX 359 2475 9 14
## 2 N335AA 3 JFK LAX 363 2475 11 57
## 3 N327AA 21 JFK LAX 351 2475 19 2
## 4 N3EHAA 29 LGA PBI 157 1035 7 22
## 5 N319AA 117 JFK LAX 350 2475 13 47
## 6 N3DEAA 119 EWR LAX 339 2454 18 24
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dim(flights)

## [1] 253316 17

We see it has 17 columns and 253316 observations.

Tip: The package dplyr can operate directly on a conventional data.frame. However, dplyr provides an
additional function, tbl_df(), which converts a conventional data frame into a tabular data frame (of
class tbl_df). The tabular data frame is a simple wrapper function of the conventional data frame which
allows for easy printing functionality.

Let us convert the conventional data frame into a tabular data frame:

flights <- tbl_df(flights)

We now look at the structure of

str(flights)

## Classes 'tbl_df', 'tbl' and 'data.frame': 253316 obs. of 17 variables:
## $ year : int 2014 2014 2014 2014 2014 2014 2014 2014 2014 2014 ...
## $ month : int 1 1 1 1 1 1 1 1 1 1 ...
## $ day : int 1 1 1 1 1 1 1 1 1 1 ...
## $ dep_time : int 914 1157 1902 722 1347 1824 2133 1542 1509 1848 ...
## $ dep_delay: int 14 -3 2 -8 2 4 -2 -3 -1 -2 ...
## $ arr_time : int 1238 1523 2224 1014 1706 2145 37 1906 1828 2206 ...
## $ arr_delay: int 13 13 9 -26 1 0 -18 -14 -17 -14 ...
## $ cancelled: int 0 0 0 0 0 0 0 0 0 0 ...
## $ carrier : Factor w/ 14 levels "AA","AS","B6",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ tailnum : Factor w/ 3784 levels "D942DN","N0EGMQ",..: 747 737 702 1205 679 1181 689 705 2145 1285 ...
## $ flight : int 1 3 21 29 117 119 185 133 145 235 ...
## $ origin : Factor w/ 3 levels "EWR","JFK","LGA": 2 2 2 3 2 1 2 2 2 2 ...
## $ dest : Factor w/ 109 levels "ABQ","ACK","AGS",..: 53 53 53 75 53 53 53 53 62 94 ...
## $ air_time : int 359 363 351 157 350 339 338 356 161 349 ...
## $ distance : int 2475 2475 2475 1035 2475 2454 2475 2475 1089 2422 ...
## $ hour : int 9 11 19 7 13 18 21 15 15 18 ...
## $ min : int 14 57 2 22 47 24 33 42 9 48 ...

We see that flights is of class tbl_df, tbl and data.frame.

As mentioned above an object of class tbl_df can easily be printed

flights

## Source: local data frame [253,316 x 17]
##
## year month day dep_time dep_delay arr_time arr_delay cancelled
## (int) (int) (int) (int) (int) (int) (int) (int)
## 1 2014 1 1 914 14 1238 13 0
## 2 2014 1 1 1157 -3 1523 13 0
## 3 2014 1 1 1902 2 2224 9 0
## 4 2014 1 1 722 -8 1014 -26 0
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## 5 2014 1 1 1347 2 1706 1 0
## 6 2014 1 1 1824 4 2145 0 0
## 7 2014 1 1 2133 -2 37 -18 0
## 8 2014 1 1 1542 -3 1906 -14 0
## 9 2014 1 1 1509 -1 1828 -17 0
## 10 2014 1 1 1848 -2 2206 -14 0
## .. ... ... ... ... ... ... ... ...
## Variables not shown: carrier (fctr), tailnum (fctr), flight (int), origin
## (fctr), dest (fctr), air_time (int), distance (int), hour (int), min
## (int)

Using the filter functionality

The function filter the function filter provides a fast and compact way to filter the data. For example,
we can quickly filter for all flights with tail number N619AA:

flights.N327AA <- filter(flights,tailnum == 'N327AA')
flights.N327AA

## Source: local data frame [7 x 17]
##
## year month day dep_time dep_delay arr_time arr_delay cancelled
## (int) (int) (int) (int) (int) (int) (int) (int)
## 1 2014 1 1 1902 2 2224 9 0
## 2 2014 1 2 1649 4 2021 11 0
## 3 2014 1 4 1005 65 1324 59 0
## 4 2014 1 5 2006 66 2312 57 0
## 5 2014 1 5 738 18 1101 16 0
## 6 2014 1 6 1859 -1 2207 -8 0
## 7 2014 1 7 1344 -1 1706 1 0
## Variables not shown: carrier (fctr), tailnum (fctr), flight (int), origin
## (fctr), dest (fctr), air_time (int), distance (int), hour (int), min
## (int)

The are a total of 7 such flights.

Exercise: Filter for all flights on a given day of your choice in 2014 and between a given time interval also
of your choice.

Using the arrange functionality

The function arrange can be used to arrange the data frame with respect to certain columns. We can for
example arrange it with respect to departure delay, firstly in ascending order (default)

arrange(flights,dep_delay)

## Source: local data frame [253,316 x 17]
##
## year month day dep_time dep_delay arr_time arr_delay cancelled
## (int) (int) (int) (int) (int) (int) (int) (int)
## 1 2014 1 21 1430 -112 1647 -112 0
## 2 2014 4 1 2325 -34 304 -40 0
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## 3 2014 1 9 1753 -27 2203 18 0
## 4 2014 2 2 2128 -27 2238 -42 0
## 5 2014 8 26 2105 -25 2352 -24 0
## 6 2014 1 13 921 -24 1259 -1 0
## 7 2014 8 26 2101 -24 2318 -41 0
## 8 2014 8 31 1636 -24 1915 -30 0
## 9 2014 10 28 2106 -24 2347 -38 0
## 10 2014 1 14 2142 -23 2251 -24 0
## .. ... ... ... ... ... ... ... ...
## Variables not shown: carrier (fctr), tailnum (fctr), flight (int), origin
## (fctr), dest (fctr), air_time (int), distance (int), hour (int), min
## (int)

as well as descending order, using desc,

arrange(flights,desc(dep_delay))

## Source: local data frame [253,316 x 17]
##
## year month day dep_time dep_delay arr_time arr_delay cancelled
## (int) (int) (int) (int) (int) (int) (int) (int)
## 1 2014 10 4 727 1498 1008 1494 0
## 2 2014 4 15 1341 1241 1443 1223 0
## 3 2014 7 14 823 1087 1046 1090 0
## 4 2014 6 13 1046 1071 1329 1064 0
## 5 2014 9 12 636 1056 1015 1115 0
## 6 2014 6 16 731 1022 1057 1073 0
## 7 2014 2 21 844 1014 1151 1007 0
## 8 2014 2 15 1244 1003 1517 994 0
## 9 2014 6 11 1119 989 1411 991 0
## 10 2014 8 26 703 978 939 964 0
## .. ... ... ... ... ... ... ... ...
## Variables not shown: carrier (fctr), tailnum (fctr), flight (int), origin
## (fctr), dest (fctr), air_time (int), distance (int), hour (int), min
## (int)

Exercise: Obtain a data set containing only flights by American Airlines (carrier AA) ordered by departure
delay.

Using the select functionality

Another useful functionality is the possibility to select certain columns of the data frame. This is done using
the select function. For example, for all flights with number N327AA let us only keep a data frame with year,
month, date and departure time

select(flights.N327AA, year, month, day, dep_time)

## Source: local data frame [7 x 4]
##
## year month day dep_time
## (int) (int) (int) (int)
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## 1 2014 1 1 1902
## 2 2014 1 2 1649
## 3 2014 1 4 1005
## 4 2014 1 5 2006
## 5 2014 1 5 738
## 6 2014 1 6 1859
## 7 2014 1 7 1344

Exercise: Combine the function select with the function distinct to obtain a list of the origin (origin)
and destination (dest) tuples for all distinct flight numbers.

Using the mutate functionality

We can create new columns and add them to the data frame using mutate. This is similar to using apply on
a data frame. For example, we can add the speed as another column to the data

mutate(flights, speed = distance / air_time * 60)

## Source: local data frame [253,316 x 18]
##
## year month day dep_time dep_delay arr_time arr_delay cancelled
## (int) (int) (int) (int) (int) (int) (int) (int)
## 1 2014 1 1 914 14 1238 13 0
## 2 2014 1 1 1157 -3 1523 13 0
## 3 2014 1 1 1902 2 2224 9 0
## 4 2014 1 1 722 -8 1014 -26 0
## 5 2014 1 1 1347 2 1706 1 0
## 6 2014 1 1 1824 4 2145 0 0
## 7 2014 1 1 2133 -2 37 -18 0
## 8 2014 1 1 1542 -3 1906 -14 0
## 9 2014 1 1 1509 -1 1828 -17 0
## 10 2014 1 1 1848 -2 2206 -14 0
## .. ... ... ... ... ... ... ... ...
## Variables not shown: carrier (fctr), tailnum (fctr), flight (int), origin
## (fctr), dest (fctr), air_time (int), distance (int), hour (int), min
## (int), speed (dbl)

Exercise: Use the mutate function to introduce a new column gain = arr_delay - dep_delay.

Using the summarise functionality

The function summarise can be used to obtain summaries of the data, as for example the mean of certain
expressions.

flights.speed <- mutate(flights, speed = distance / air_time * 60)
summarise(flights.speed , avspeed = mean(speed, na.rm = TRUE))

## Source: local data frame [1 x 1]
##
## avspeed
## (dbl)
## 1 399.3063
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Exercise: Imagine an airline has to pay US$ X penalty for every minute of delay. What was the amount
American Airlines had to pay in 2014?

Using pipes from magrittr

If you are a unix/linux user, you will most probably be familiar with the pipe operator >. The pipe operator
can be used on the shell to pass the output of one command over as the input of another command. The
package magrittr introduces a similar functionality in R using the operator %>%. This pipe can be used to
facilitate the workflow and make code more readable. After a pipe command we can skip the first argument
of the next function which is automatically passed over. The pipe operator from magrittr works perfectly
with dplyr. For example, the code

flights.1 <- select(flights, distance, air_time)
flights.2 <- mutate(flights.1, speed = distance / air_time * 60)
flights.3 <- arrange(flights.2 , desc(speed))
flights.3

## Source: local data frame [253,316 x 3]
##
## distance air_time speed
## (int) (int) (dbl)
## 1 725 69 630.4348
## 2 284 28 608.5714
## 3 2153 217 595.2995
## 4 488 50 585.6000
## 5 1598 173 554.2197
## 6 184 20 552.0000
## 7 1089 119 549.0756
## 8 1598 175 547.8857
## 9 2133 234 546.9231
## 10 1576 173 546.5896
## .. ... ... ...

can be written compactly using pipes as

library(magrittr)
flights.3 <- select(flights, distance, air_time) %>%

mutate(speed = distance / air_time * 60) %>%
arrange(desc(speed))

flights.3

## Source: local data frame [253,316 x 3]
##
## distance air_time speed
## (int) (int) (dbl)
## 1 725 69 630.4348
## 2 284 28 608.5714
## 3 2153 217 595.2995
## 4 488 50 585.6000
## 5 1598 173 554.2197
## 6 184 20 552.0000
## 7 1089 119 549.0756
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## 8 1598 175 547.8857
## 9 2133 234 546.9231
## 10 1576 173 546.5896
## .. ... ... ...

Exercise: Execute the above commands. Understand how the pipe operator works.

Summary

The package dplyr is a powerful package for querying and manipulating data frames. In combination with
the pipe operator from magrittr it can be ideal for complex workflows on large data sets. A disadvantage of
the dplyr package, as presented so far, is the fact that it still operates on data frames. In the next section
we introduce a data.table which is a more powerful and faster data container, as compared to data frames.
In fact, we will see that we can use dplyr commands on a data.table.

Exercise: Which flight number appeared most often in 2014. Create a data frame with two columns which
has flight numbers in one column and number of appearances in the other column. The data frame should be
ordered in descending order with respect to the second column. Do the exercise once without pipes and once
with pipes.

From data frames to data.table

We now discuss the package data.table by M. Dowle, A. Srinivasan, T. Short and S. Lianoglou which
implements objects of class of the same name. The advantage of a data.table is that it is implemented
entirely in C++ offering highly optimised querying functionalities.

In this exposition we follow the package vignette:

• Introduction to data.table

In particular, we discuss the following functionalities of the data.table package:

• Subsetting on rows
• Ordering
• Subsetting on columns
• Computing on columns and aggregating results
• Data table with dplyr and magrittr

Loading the package and example data

The package is loaded as follows:

library(data.table)

To illustrate the packages functionalities we use the same data set as we used in the previous section.

If we have a data set which is given as a data.frame, we can easily convert it into a data.table using the
command data.table()

flights <- data.table(flights)
flights
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## year month day dep_time dep_delay arr_time arr_delay cancelled
## 1: 2014 1 1 914 14 1238 13 0
## 2: 2014 1 1 1157 -3 1523 13 0
## 3: 2014 1 1 1902 2 2224 9 0
## 4: 2014 1 1 722 -8 1014 -26 0
## 5: 2014 1 1 1347 2 1706 1 0
## ---
## 253312: 2014 10 31 1459 1 1747 -30 0
## 253313: 2014 10 31 854 -5 1147 -14 0
## 253314: 2014 10 31 1102 -8 1311 16 0
## 253315: 2014 10 31 1106 -4 1325 15 0
## 253316: 2014 10 31 824 -5 1045 1 0
## carrier tailnum flight origin dest air_time distance hour min
## 1: AA N338AA 1 JFK LAX 359 2475 9 14
## 2: AA N335AA 3 JFK LAX 363 2475 11 57
## 3: AA N327AA 21 JFK LAX 351 2475 19 2
## 4: AA N3EHAA 29 LGA PBI 157 1035 7 22
## 5: AA N319AA 117 JFK LAX 350 2475 13 47
## ---
## 253312: UA N23708 1744 LGA IAH 201 1416 14 59
## 253313: UA N33132 1758 EWR IAH 189 1400 8 54
## 253314: MQ N827MQ 3591 LGA RDU 83 431 11 2
## 253315: MQ N511MQ 3592 LGA DTW 75 502 11 6
## 253316: MQ N813MQ 3599 LGA SDF 110 659 8 24

In addition, the package data.table includes a function called fread (fast and friendly file finagler) for fast
data importation directly into a data table:

flights <- fread("flights14.csv")

Subsetting on rows

Data tables have similar subsetting functionalities as dplyr offers using the filer command. However, the
data table follows a syntax which is closer to the subsetting of rows in data frames, but is a more advanced
SQL-style syntax. For example, to filter for flights with number N327AA we simple write:

flights.N327AA <- flights[tailnum == 'N327AA']
flights.N327AA

## year month day dep_time dep_delay arr_time arr_delay cancelled carrier
## 1: 2014 1 1 1902 2 2224 9 0 AA
## 2: 2014 1 2 1649 4 2021 11 0 AA
## 3: 2014 1 4 1005 65 1324 59 0 AA
## 4: 2014 1 5 2006 66 2312 57 0 AA
## 5: 2014 1 5 738 18 1101 16 0 AA
## 6: 2014 1 6 1859 -1 2207 -8 0 AA
## 7: 2014 1 7 1344 -1 1706 1 0 AA
## tailnum flight origin dest air_time distance hour min
## 1: N327AA 21 JFK LAX 351 2475 19 2
## 2: N327AA 181 JFK LAX 346 2475 16 49
## 3: N327AA 1 JFK LAX 346 2475 10 5
## 4: N327AA 21 JFK LAX 320 2475 20 6
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## 5: N327AA 1345 JFK MIA 158 1089 7 38
## 6: N327AA 21 JFK LAX 337 2475 18 59
## 7: N327AA 117 JFK LAX 357 2475 13 44

Note: You observe the similarity to conventional row subsetting for data frames flights[flights$tailnum=='N327AA',].

Exercise: Filter for all flights in a given months by a given airline.

Ordering

Similar to the arrange function in dplyr we can use the order function when subsetting:

flights[order(dep_delay)]

## year month day dep_time dep_delay arr_time arr_delay cancelled
## 1: 2014 1 21 1430 -112 1647 -112 0
## 2: 2014 4 1 2325 -34 304 -40 0
## 3: 2014 1 9 1753 -27 2203 18 0
## 4: 2014 2 2 2128 -27 2238 -42 0
## 5: 2014 8 26 2105 -25 2352 -24 0
## ---
## 253312: 2014 9 12 636 1056 1015 1115 0
## 253313: 2014 6 13 1046 1071 1329 1064 0
## 253314: 2014 7 14 823 1087 1046 1090 0
## 253315: 2014 4 15 1341 1241 1443 1223 0
## 253316: 2014 10 4 727 1498 1008 1494 0
## carrier tailnum flight origin dest air_time distance hour min
## 1: DL N320US 1619 LGA MSP 153 1020 14 30
## 2: DL N722TW 425 JFK SJU 192 1598 23 25
## 3: AA N3LFAA 119 EWR LAX 332 2454 17 53
## 4: EV N761ND 5311 LGA BGR 51 378 21 28
## 5: B6 N510JB 1371 LGA FLL 134 1076 21 5
## ---
## 253312: AA N548AA 1642 EWR DFW 198 1372 6 36
## 253313: AA N502AA 2488 EWR DFW 175 1372 10 46
## 253314: DL N966AT 673 EWR ATL 97 746 8 23
## 253315: AA N3FNAA 256 JFK BOS 39 187 13 41
## 253316: AA N4WJAA 1381 EWR DFW 200 1372 7 27

or in descending order

flights[order(-dep_delay)]

## year month day dep_time dep_delay arr_time arr_delay cancelled
## 1: 2014 10 4 727 1498 1008 1494 0
## 2: 2014 4 15 1341 1241 1443 1223 0
## 3: 2014 7 14 823 1087 1046 1090 0
## 4: 2014 6 13 1046 1071 1329 1064 0
## 5: 2014 9 12 636 1056 1015 1115 0
## ---
## 253312: 2014 8 26 2105 -25 2352 -24 0
## 253313: 2014 1 9 1753 -27 2203 18 0
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## 253314: 2014 2 2 2128 -27 2238 -42 0
## 253315: 2014 4 1 2325 -34 304 -40 0
## 253316: 2014 1 21 1430 -112 1647 -112 0
## carrier tailnum flight origin dest air_time distance hour min
## 1: AA N4WJAA 1381 EWR DFW 200 1372 7 27
## 2: AA N3FNAA 256 JFK BOS 39 187 13 41
## 3: DL N966AT 673 EWR ATL 97 746 8 23
## 4: AA N502AA 2488 EWR DFW 175 1372 10 46
## 5: AA N548AA 1642 EWR DFW 198 1372 6 36
## ---
## 253312: B6 N510JB 1371 LGA FLL 134 1076 21 5
## 253313: AA N3LFAA 119 EWR LAX 332 2454 17 53
## 253314: EV N761ND 5311 LGA BGR 51 378 21 28
## 253315: DL N722TW 425 JFK SJU 192 1598 23 25
## 253316: DL N320US 1619 LGA MSP 153 1020 14 30

Exercise: As in the previous section using dplyr, obtain a data set containing only flights by American
Airlines (carrier AA) ordered by departure delay.

Subsetting on columns

If we want to subset on columns as we did in dplyr using the select command, we can do this on data
tables using another subsetting syntax, namely the .() command. Let us provide an example:

flights.N327AA[ ,.(year, month, day, dep_time)]

## year month day dep_time
## 1: 2014 1 1 1902
## 2: 2014 1 2 1649
## 3: 2014 1 4 1005
## 4: 2014 1 5 2006
## 5: 2014 1 5 738
## 6: 2014 1 6 1859
## 7: 2014 1 7 1344

Here .(year, month, day, dep_time) selects the columns year, month, day and dep_time.

Computing on columns and aggregating results

You can do computation on the data and also summarise those computations using the .() syntax of the
data.table package. For example, similar to mutate in dplyr, new columns can be introduced as follows

flights[ ,.(speed = distance / air_time * 60)]

## speed
## 1: 413.6490
## 2: 409.0909
## 3: 423.0769
## 4: 395.5414
## 5: 424.2857
## ---
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## 253312: 422.6866
## 253313: 444.4444
## 253314: 311.5663
## 253315: 401.6000
## 253316: 359.4545

With nearly the same syntax we can also summarise:

flights[ ,.(mean(distance / air_time * 60,na.rm=TRUE))]

## V1
## 1: 399.3063

Exercise: Read about the by functionality in data.table in the help page or the vignette. Above we ran
the following dplyr commands:

flights.3 <- select(flights, distance, air_time) %>%
mutate(speed = distance / air_time * 60) %>%
arrange(desc(speed))

Obtain the same query using native data.table functions.

Exercise: Which flight number appeared most often in 2014. Create a data frame with two columns which
has flight numbers in one column and number of appearances in the other column. Use the .N function in
data.table (see vignette for help).

Data table with dplyr and magrittr

Note that you can also use dplyr function as well as pipes to work on data tables. For example, we could
run the exact command we used previously on a data frame with dplyr, but now on a data table:

select(flights, distance, air_time) %>%
mutate(speed = distance / air_time * 60) %>%
arrange(desc(speed))

## distance air_time speed
## 1: 725 69 630.43478
## 2: 284 28 608.57143
## 3: 2153 217 595.29954
## 4: 488 50 585.60000
## 5: 1598 173 554.21965
## ---
## 253312: 96 55 104.72727
## 253313: 80 46 104.34783
## 253314: 96 56 102.85714
## 253315: 96 66 87.27273
## 253316: 96 76 75.78947

This provides both the great functionalities and simple syntax from dplyr as well as the speed advantage of
data.table.

Tip: The data.table package also has implementations of the melt and dcast functions for objects of class
data.table.
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Interacting with databases using SQLite and dplyr

We have already seen how to use dplyr to quickly query and manipulate data frames. Furthermore, we have
seen that the same functionalities can also be used on data tables. For those working with databases it will
probably be nice to hear that the same is also true for databases. Combining dplyr with the SQLite package
you can operate on SQL databases with the same commands as you used before on data frames and data
tables.

We refer to the following vignette for details:

• Databases

The workflow when working with databases is usually the following: Often there is a very large data set, as a
researcher or analyst, you want to query and subset it to focus on a certain part of the data. This part is then
collected (see collect) and loaded into memory for further explanatory data anlysis and analytics. As an
example, think a bout financial data. You might have a hugh historical data base of say the last 30 years of
stock data. In any given analysis task you might only have to focus on a small number of stocks, or a shorter
time period. You might also be only interest in moving averages over a large time horizon. All those queries
and subsettings can be done using the dplyr commands we discussed in the previous section. Once done, the
data can be loaded in a data frame or data table for further analysis, which can easily be done in memory.

A short comment on web-based formats using XML and jsonlite

Apart from databases we can also use dplyr and data.table in combination with web-based formats such
as xml or json. Have a look at the following packages:

• XML
• jsonlite

While we do not go into details in how to use those packages. From what you have learned in this course it is
straightforward to extend our workflow to include xml and json files. For example, you can download an
entire image of wikipedia in xml and query it for joint occurrences of certain words. Many other online
services also offer APIs where you can download data in json format, such as google map data, twitter data,
weather data etc.
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