
Data Wrangling with R

Stefan Zohren

19 May 2016

Content of this lecture

I Getting started with R
I Installation and Packages
I Basic commands
I Vectors, matrices and lists
I Data frames
I Basic programming

I Importing, exporting and manipulating data with R
I Packages for advanced data wrangling

I Manipulating data with reshape2
I Manipulating data with dplyr
I From data frames to data.table
I Interacting with databases using SQLite and dplyr

I Summary

Calculating with R
You can use R interactively as a calculator, i.e.

3+sqrt(2)

[1] 4.414214

returns the value of 3 +
√
2. If you are not sure what a function

does type ? for help, i.e. ?sqrt.

We can assign values to variables using the assignment operator <-

x <- 3
y <- 4.5
x+y

[1] 7.5

Objects and types
A useful command to examine objects is the str (structure)
command

str(x)

num 3

We see that R by default made x a numeric (double) variable. We
could change it to be of type integer by invoking the command

x<-as.integer(x)
str(x)

int 3

Vectors

Create a vector:

vec<-c(25,28,1.85,1.70,90,75)

Let us again look at the structure

str(vec)

num [1:6] 25 28 1.85 1.7 90 75

It is a numeric (double) vector with entries indexed by 1,..,6.
Observe that, as opposed to C/C++ or Python, indices start at 1.

Vectors: Indexing and slicing

To get for example the first entry, use vec[1]. We can also slice
vectors:

vec[3:5]

[1] 1.85 1.70 90.00

To return all but a given entry:

vec[-1]

[1] 28.00 1.85 1.70 90.00 75.00

Matrices

We can create a matrix from our vector

M<-matrix(vec,ncol=3)

[,1] [,2] [,3]
[1,] 25 1.85 90
[2,] 28 1.70 75

Observe the indecing: M[row(s),column(s)]. Matrices can also
be sliced, similar to vectors.

Lists
A list is similar to a vector, but allows to store arbitrary objects in
it:

l <- list(v=vec,m=M)
l

$v
[1] 25.00 28.00 1.85 1.70 90.00 75.00
##
$m
[,1] [,2] [,3]
[1,] 25 1.85 90
[2,] 28 1.70 75

Here each element of the list has a name, in our case v and m and
we can use those names to access the elements, e.g. l$v.

Data frame: basics

We can take our matrix from the previous slides, add column names
and transform it into a data frame:

colnames(M)=c("age","height","weight")
data<-as.data.frame(M)
data

age height weight
1 25 1.85 90
2 28 1.70 75

Data frame: adding and manipulating
We can add a new column:

data$weightOheight <- data$weight/data$height
data

age height weight weightOheight
1 25 1.85 90 48.64865
2 28 1.70 75 44.11765

A very useful function is apply:

apply(data,2,mean)

age height weight weightOheight
26.50000 1.77500 82.50000 46.38315

Basic programming

You can write your own functions and loops etc. Here one example:

my.mean <- function(vector){
n=length(vector)
sum=0
for(i in 1:n){

sum = sum+vector[i]
}
sum/n # note: no need for 'return'

}

For example my.mean(1:6) gives 3.5. A major application is to
use your function in apply similar to what we discussed above, i.e.
apply(data,2,my.mean).

Importing and exporting data

Probably the easiest way of importing and exporting data in R is
using the read.csv and write.csv commands. This is done for
example

flights <- read.csv("flights14.csv")

There are many options, type ?read.csv for help.

To write files use write.csv.

You can also import and export Excel files directly using the xlsx
package, but it is generally better to use the .csv files as an
universal exchange medium.

Inspecting data

To inspect newly imported data use

head(flights)
tail(flights)

to see that first and last 6 rows,

dim(flights)

for the dimensions, as well as nrow and ncol, and

str(flights)

for the structure.

Subsetting of data

We can easily subset and query the data. For example, the following
command gives the total number of flights by American Airlines:

sum(flights$carrier == 'AA')

[1] 26302

We can select only those rows from the data frame and save it into
a new data frame called flights.AA:

flights.AA <- flights[flights$carrier == 'AA',]

Computing on rows

Using R we can effectively compute on rows and columns. For
example the mean departure delay of a all flights (rows) is given by

mean(flights$dep_delay)

[1] 12.46526

Computing on columns

We can also compute on columns and furthermore create new
columns which are dynamically obtained from computations on other
columns. For example, we can calculate the gain = arr_delay -
dep_delay as a difference on arrival delay minus departure delay
and add this information as a new column to the data frame

flights$gain <- flights$arr_delay - flights$dep_delay
head(flights)

Packages for advanced data wrangling

We now discuss packages for advanced data wrangling:

I Manipulating data with reshape2
I Manipulating data with dplyr
I From data frames to data.table
I Interacting with databases using SQLite and dplyr

Make sure you install all packages used.

Manipulating data with reshape2

One of the main functionalities of the package reshape2 is the
capability to transform data frames from a wide format to a long
format and vice-versa.

The main functions of the package are:

I melt
I cast (became dcast and acast in reshape2)

See:

I Reshaping data with the reshape package, by H. Wickham, in
J. Stat. Software (2007).

http://www.jstatsoft.org/v21/i12

Loading the package and example data

We start by loading the package and a funny data set on chips
which comes with it

library(reshape2)
data(french_fries)
head(french_fries)

time treatment subject rep potato buttery grassy rancid painty
61 1 1 3 1 2.9 0.0 0.0 0.0 5.5
25 1 1 3 2 14.0 0.0 0.0 1.1 0.0
62 1 1 10 1 11.0 6.4 0.0 0.0 0.0
26 1 1 10 2 9.9 5.9 2.9 2.2 0.0
63 1 1 15 1 1.2 0.1 0.0 1.1 5.1
27 1 1 15 2 8.8 3.0 3.6 1.5 2.3

Melting: Transforming data from wide to long
The first step in transforming data using the reshape2 package is
to ‘melt’ the data from a wide to a long format:

chips.m <- melt(french_fries, id = 1:4)
head(chips.m)

time treatment subject rep variable value
1 1 1 3 1 potato 2.9
2 1 1 3 2 potato 14.0
3 1 1 10 1 potato 11.0
4 1 1 10 2 potato 9.9
5 1 1 15 1 potato 1.2
6 1 1 15 2 potato 8.8

We see that we kept the first four columns, as we specified by id =
1:4. However the remaining variables are now specified in two
columns variable and values.

Casting: Transforming data from long to wide
Having molten the data, we can now cast it back into wide format
using different prescriptions. This is done using the dcast function.
We can use this to calculate for example the mean for each variable
given a treatment:

chips.c <- dcast(chips.m, treatment ~ variable,
mean, na.rm=TRUE)

chips.c[,1:5]

treatment potato buttery grassy rancid
1 1 6.887931 1.780087 0.6491379 4.065517
2 2 7.001724 1.973913 0.6629310 3.624569
3 3 6.967965 1.717749 0.6805195 3.866667

Here treatment ~ variable means treatment as a function of
variable.

Manipulating data with dplyr

We now look at more modern packages for data manipulation
starting with the package dplyr.

The main functions of the package are:

I filter
I arrange
I select
I mutate
I summarise
I Pipes from magrittr

Loading the package and sample data

We load the package:

library(dplyr)

as well as the flights data used earlier:

flights <- read.csv("flights14.csv")
dim(flights)

[1] 253316 17

We see it has 17 columns and 253316 observations.

Tabular data frames
dplyr has a wrapper to the conventional data.frame which allows
for easy printing

Let us convert the conventional data frame into a tabular data
frame:

flights <- tbl_df(flights)

It is now of class

class(flights)

[1] "tbl_df" "tbl" "data.frame"

You can easily print it by typing

flights

Using the filter functionality

The function filter the function filter provides a fast and
compact way to filter the data. For example, we can quickly filter
for all flights with tail number N619AA:

flights.N327AA <- filter(flights,tailnum == 'N327AA')
dim(flights.N327AA)

[1] 7 17

The are a total of 7 such flights.

Using the arrange functionality

The function arrange can be used to arrange the data frame with
respect to certain columns. We can for example arrange it with
respect to departure delay, firstly in ascending order (default)

arrange(flights,dep_delay)

as well as descending order, using desc,

arrange(flights,desc(dep_delay))

Using the select functionality
Another useful functionality is the possibility to select certain
columns of the data frame. This is done using the select function.
For example, for all flights with number N327AA let us only keep a
data frame with year, month, date and departure time

select(flights.N327AA, year, month, day, dep_time)

Source: local data frame [7 x 4]
##
year month day dep_time
(int) (int) (int) (int)
1 2014 1 1 1902
2 2014 1 2 1649
3 2014 1 4 1005
4 2014 1 5 2006
5 2014 1 5 738
6 2014 1 6 1859
7 2014 1 7 1344

Using the mutate functionality
We can create new columns and add them to the data frame using
mutate. This is similar to using apply on a data frame. For
example, we can add the speed as another column to the data

flights.speed <- mutate(flights,
speed = distance / air_time * 60)

head(select(flights.speed, speed))

Source: local data frame [6 x 1]
##
speed
(dbl)
1 413.6490
2 409.0909
3 423.0769
4 395.5414
5 424.2857
6 434.3363

Using the summarise functionality

The function summarise can be used to obtain summaries of the
data, as for example the mean of certain expressions.

summarise(flights.speed ,
avspeed = mean(speed, na.rm = TRUE))

Source: local data frame [1 x 1]
##
avspeed
(dbl)
1 399.3063

Using pipes from magrittr

If you are a unix/linux user, you will most probably be familiar with
the pipe operator >. The pipe operator can be used on the shell to
pass the output of one command over as the input of another
command. The package magrittr introduces a similar functionality
in R using the operator %>%.

For example, instead of

flights.1 <- select(flights, distance, air_time)
flights.2 <- mutate(flights.1,

speed = distance / air_time * 60)
flights.3 <- arrange(flights.2 , desc(speed))

. . .

Using pipes from magrittr

. . . we can write compactly

library(magrittr)
flights.3 <- select(flights, distance, air_time) %>%

mutate(speed = distance / air_time * 60) %>%
arrange(desc(speed))

using the pipe operator %>% in magrittr.

From data frames to data.table

The advantage of a data.table is that it is implemented entirely
in C++ offering highly optimised querying functionalities.

We discuss the following functionalities of the data.table package:

I Subsetting on rows
I Ordering
I Subsetting on columns
I Computing on columns and aggregating results
I Data table with dplyr and magrittr

See Introduction to data.table in the package vignette.

https://rawgit.com/wiki/Rdatatable/data.table/vignettes/datatable-intro.html

Loading the package and example data

The package is loaded as follows:

library(data.table)

To illustrate the packages functionalities we use the same data set
as we used in the previous section. We can easily convert a
data.frame into a data.table using the command
data.table()

flights <- data.table(flights)

Alternatively, we can import directly into a data.table using

flights <- fread("flights14.csv")

Subsetting on rows

Data tables have similar subsetting functionalities as dplyr offers
using the filer command. However, the data table follows a syntax
which is closer to the subsetting of rows in data frames, but is a
more advanced SQL-style syntax. For example, to filter for flights
with number N327AA we simple write:

flights.N327AA <- flights[tailnum == 'N327AA']

Type head(flights.N327AA) or View(flights.N327AA) to
insect it.

Ordering

Similar to the arrange function in dplyr we can use the order
function when subsetting:

flights[order(dep_delay)]

or in descending order

flights[order(-dep_delay)]

Subsetting on columns
If we want to subset on columns as we did in dplyr using the
select command, we can do this on data tables using another
subsetting syntax, namely the .() command:

flights.N327AA[,.(year, month, day, dep_time)]

year month day dep_time
1: 2014 1 1 1902
2: 2014 1 2 1649
3: 2014 1 4 1005
4: 2014 1 5 2006
5: 2014 1 5 738
6: 2014 1 6 1859
7: 2014 1 7 1344

Here .(year, month, day, dep_time) selects the columns
year, month, day and dep_time.

Computing on columns and aggregating results

You can do computation on the data and also summarise those
computations using the .() syntax of the data.table package.
For example, similar to mutate in dplyr, new columns can be
introduced as follows

flights[,.(speed = distance / air_time * 60)]

With nearly the same syntax we can also summarise:

flights[,.(mean(distance / air_time * 60,na.rm=TRUE))]

V1
1: 399.3063

Data table with dplyr and magrittr

Note that you can also use dplyr function as well as pipes to work
on data tables. For example, we could run the exact command we
used previously on a data frame with dplyr, but now on a data
table:

select(flights, distance, air_time) %>%
mutate(speed = distance / air_time * 60) %>%
arrange(desc(speed))

This provides both the great functionalities and simple syntax from
dplyr as well as the speed advantage of data.table.

Interacting with databases using SQLite and dplyr

We have already seen how to use dplyr to quickly query and
manipulate data frames. Furthermore, we have seen that the same
functionalities can also be used on data tables. For those working
with databases it will probably be nice to hear that the same is also
true for databases. Combining dplyr with the SQLite package you
can operate on SQL databases with the same commands as you
used before on data frames and data tables (see Databases)

https://cran.r-project.org/web/packages/dplyr/vignettes/databases.html

Comment on web-based formats using XML and jsonlite

Apart from databases we can also use dplyr and data.table in
combination with web-based formats such as xml or json. Have a
look at the following packages:

I XML
I jsonlite

From what you have learned in this course it is straightforward to
extend our workflow to include xml and json files.

I For example, you can download an entire image of wikipedia
in xml and query it for joint occurrences of certain words.

I Many other online services also offer APIs where you can
download data in json format, such as google map data,
twitter data, weather data etc.

Summary

I This course is about how to efficiently handle portentially large
and messy data sets in R

I We revised basic objects in R, like vectors, matrices, lists and
data frames

I Basic functionalities in R for importing, exporting and
manipulation data were discussed

I We reviewed more advanced packages for data wrangling in R
including:

I reshape2 for melting and casting data
I dplyr for advanced subsetting and querying of data
I data.table for fast and efficient data containers
I magrittr for using pipes in workflows

I We also briefly commented on how to go from in-memory data
to databases and other web-based formats

